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Spaces in mathematics 
Boris Tsirelson¹* et al.  

Abstract 
While modern mathematics use many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, 
Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.[1][details 1] 

A space consists of selected mathematical objects that are treated as points, and selected relationships between 
these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions 
on another space, or subspaces of another space. It is the relationships that define the nature of the space. More 
precisely, isomorphic spaces are considered identical, where an isomorphism between two spaces is a one-to-one 
correspondence between their points that preserves the relationships. For example, the relationships between the 
points of a three-dimensional Euclidean space are uniquely determined by Euclid's axioms,[details 2] and all three-
dimensional Euclidean spaces are considered identical. 

Topological notions such as continuity have natural definitions in every Euclidean space. However, topology does 
not distinguish straight lines from curved lines, and the relation between Euclidean and topological spaces is thus 
"forgetful". Relations of this kind are sketched in Figure 1, and treated in more detail in the Section "Types of 
spaces". 

It is not always clear whether a given mathematical object should be considered as a geometric "space", or an 
algebraic "structure". A general definition of "structure", proposed by Bourbaki[2], embraces all common types of 
spaces, provides a general definition of isomorphism, and justifies the transfer of properties between isomorphic 
structures. 

 

 

History 

Before the golden age of geometry 

In ancient Greek mathematics, "space" was a geometric 
abstraction of the three-dimensional reality observed in 
everyday life. About 300 BC, Euclid gave axioms for the 
properties of space. Euclid built all of mathematics on 
these geometric foundations, going so far as to define 
numbers by comparing the lengths of line segments to 
the length of a chosen reference segment. 

The method of coordinates (analytic geometry) was 
adopted by René Descartes in 1637.[3] At that time, ge-
ometric theorems were treated as absolute objective 
truths knowable through intuition and reason, similar to 
objects of natural science;[4]:11 and axioms were treated 
as obvious implications of definitions.[4]:15 

Two equivalence relations between geometric figures 
were used: congruence and similarity. Translations, ro-
tations and reflections transform a figure into congru-
ent figures; homotheties — into similar figures. For ex-
ample, all circles are mutually similar, but ellipses are 
not similar to circles. A third equivalence relation, intro-
duced by Gaspard Monge in 1795, occurs in projective 
geometry: not only ellipses, but also parabolas and hy-
perbolas, turn into circles under appropriate projective 
transformations; they all are projectively equivalent fig-
ures. 

The relation between the two geometries, Euclidean 
and projective,[4]:133 shows that mathematical objects 
are not given to us with their structure.[4]:21 Rather, each 
mathematical theory describes its objects by some of 
their properties, precisely those that are put as axioms 
at the foundations of the theory.[4]:20 

Distances and angles cannot appear in theorems of pro-
jective geometry, since these notions are neither men-
tioned in the axioms of projective geometry nor defined 
from the notions mentioned there. The question "what 
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is the sum of the three angles of a triangle" is meaning-
ful in Euclidean geometry but meaningless in projective 
geometry. 

A different situation appeared in the 19th century: in 
some geometries the sum of the three angles of a trian-
gle is well-defined but different from the classical value 
(180 degrees). Non-Euclidean hyperbolic geometry, in-
troduced by Nikolai Lobachevsky in 1829 and János Bol-
yai in 1832 (and Carl Gauss in 1816, unpublished)[4]:133 

stated that the sum depends on the triangle and is al-
ways less than 180 degrees. Eugenio Beltrami in 1868 
and Felix Klein in 1871 obtained Euclidean "models" of 
the non-Euclidean hyperbolic geometry, and thereby 
completely justified this theory as a logical possibil-
ity.[4]:24 [5] 

This discovery forced the abandonment of the preten-
sions to the absolute truth of Euclidean geometry. It 

 
 
Figure 1 | Overview of types of abstract spaces. An arrow from space A to space B implies that space A is also a kind of space B. 
That means, for instance, that a normed vector space is also a metric space.  
Stefan Eckert, CC-BY-SA 3.0 

        

            
                       

                   
      

            
          

             
                              

                   
             

                    
          

            
                    

                 
          

  

Table 1 | Historical development of mathematical concepts 

Classic Modern 

axioms are obvious implications of definitions axioms are conventional 

theorems are absolute objective truth theorems are implications of the corresponding axioms 

relationships between points, lines etc. are determined 
by their nature 

relationships between points, lines etc. are essential; their na-
ture is not 

mathematical objects are given to us with their struc-
ture 

each mathematical theory describes its objects by some of their 
properties 

geometry corresponds to an experimental reality geometry is a mathematical truth 

all geometric properties of the space follow from the ax-
ioms 

axioms of a space need not determine all geometric properties 

geometry is an autonomous and living science classical geometry is a universal language of mathematics 

space is three-dimensional different concepts of dimension apply to different kind of spaces 

space is the universe of geometry 
spaces are just mathematical structures, they occur in various 
branches of mathematics 
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showed that axioms are not "obvious", nor "implica-
tions of definitions". Rather, they are hypotheses. To 
what extent do they correspond to an experimental re-
ality? This important physical problem no longer has 
anything to do with mathematics. Even if a "geometry" 
does not correspond to an experimental reality, its the-
orems remain no less "mathematical truths".[4]:15 

A Euclidean model of a non-Euclidean geometry is a 
choice of some objects existing in Euclidean space and 
some relations between these objects that satisfy all ax-
ioms (and therefore, all theorems) of the non-Euclidean 
geometry. These Euclidean objects and relations "play" 
the non-Euclidean geometry like contemporary actors 
playing an ancient performance. Actors can imitate a 
situation that never occurred in reality. Relations be-
tween the actors on the stage imitate relations between 
the characters in the play. Likewise, the chosen rela-
tions between the chosen objects of the Euclidean 
model imitate the non-Euclidean relations. It shows 
that relations between objects are essential in mathe-
matics, while the nature of the objects is not. 

The golden age and afterwards 

The word "geometry" (from Ancient Greek: geo- 
"earth", -metron "measurement") initially meant a prac-
tical way of processing lengths, regions and volumes in 
the space in which we live, but was then extended 
widely (as well as the notion of space in question here). 

According to Bourbaki,[4]:131 the period between 1795 
(Géométrie descriptive of Monge) and 1872 (the "Erlan-
gen programme" of Klein) can be called the golden age 
of geometry. The original space investigated by Euclid 
is now called three-dimensional Euclidean space. Its ax-
iomatization, started by Euclid 23 centuries ago, was re-
formed with Hilbert's axioms, Tarski's axioms and 
Birkhoff's axioms. These axiom systems describe the 

space via primitive notions (such as "point", "between", 
"congruent") constrained by a number of axioms. 

Analytic geometry made great progress and succeeded 
in replacing theorems of classical geometry with com-
putations via invariants of transformation groups.[4]:134,5 

Since that time, new theorems of classical geometry 
have been of more interest to amateurs than to profes-
sional mathematicians.[4]:136 However, the heritage of 
classical geometry was not lost. According to Bour-
baki,[4]:138 "passed over in its role as an autonomous and 
living science, classical geometry is thus transfigured 
into a universal language of contemporary mathemat-
ics". 

Simultaneously, numbers began to displace geometry 
as the foundation of mathematics. For instance, in Rich-
ard Dedekind's 1872 essay Stetigkeit und irrationale 
Zahlen (Continuity and irrational numbers), he asserts 
that points on a line ought to have the properties of De-
dekind cuts, and that therefore a line was the same 
thing as the set of real numbers. Dedekind is careful to 
note that this is an assumption that is incapable of be-
ing proven. In modern treatments, Dedekind's assertion 
is often taken to be the definition of a line, thereby re-
ducing geometry to arithmetic. Three-dimensional Eu-
clidean space is defined to be an affine space whose as-
sociated vector space of differences of its elements is 
equipped with an inner product.[6] A definition "from 
scratch", as in Euclid, is now not often used, since it does 
not reveal the relation of this space to other spaces. 
Also, a three-dimensional projective space is now de-
fined as the space of all one-dimensional subspaces 
(that is, straight lines through the origin) of a four-di-
mensional vector space. This shift in foundations re-
quires a new set of axioms, and if these axioms are 
adopted, the classical axioms of geometry become the-
orems. 

A space now consists of selected mathematical objects 
(for instance, functions on another space, or subspaces 
of another space, or just elements of a set) treated as 
points, and selected relationships between these 
points. Therefore, spaces are just mathematical struc-
tures of convenience. One may expect that the struc-
tures called "spaces" are perceived more geometrically 
than other mathematical objects, but this is not always 
true. 

According to the famous inaugural lecture given by 
Bernhard Riemann in 1854, every mathematical object 
parametrized by n real numbers may be treated as a 
point of the n-dimensional space of all such ob-
jects.[4]:140 Contemporary mathematicians follow this 
idea routinely and find it extremely suggestive to use 

 
 

Figure 2 | Homothety transforms a geometric figure into a 
similar one by scaling 
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the terminology of classical geometry nearly every-
where.[4]:138 

Functions are important mathematical objects. Usually 
they form infinite-dimensional function spaces, as 
noted already by Riemann[4]:141 and elaborated in the 
20th century by functional analysis. 

Taxonomy of spaces 

Three taxonomic ranks 

While each type of spaces has its own definition, the 
general idea of "space" evades formalization. Some 
structures are called spaces, other are not, without a 
formal criterion. Moreover, there is no consensus on the 
general idea of "structure". According to Pudlák,[7] 
"Mathematics [...] cannot be explained completely by a 
single concept such as the mathematical structure. 
Nevertheless, Bourbaki's structuralist approach is the 
best that we have." We will return to Bourbaki's struc-
turalist approach in the last section "Spaces and struc-
tures", while we now outline a possible classification of 
spaces (and structures) in the spirit of Bourbaki. 

We classify spaces on three levels. Given that each 
mathematical theory describes its objects by some of 
their properties, the first question to ask is: which prop-
erties? This leads to the first (upper) classification level. 
On the second level, one takes into account answers to 
especially important questions (among the questions 
that make sense according to the first level). On the 
third level of classification, one takes into account an-
swers to all possible questions.

 

For example, the upper-level classification distinguishes 
between Euclidean and projective spaces, since the dis-
tance between two points is defined in Euclidean spaces 
but undefined in projective spaces. 

Another example. The question "what is the sum of the 
three angles of a triangle" makes sense in a Euclidean 
space but not in a projective space. In a non-Euclidean 
space the question makes sense but is answered differ-
ently, which is not an upper-level distinction. 

Also, the distinction between a Euclidean plane and a 
Euclidean 3-dimensional space is not an upper-level dis-
tinction; the question "what is the dimension" makes 
sense in both cases.

 

 

The second-level classification distinguishes, for exam-
ple, between Euclidean and non-Euclidean spaces; be-
tween finite-dimensional and infinite-dimensional 
spaces; between compact and non-compact spaces, 
etc. 

In Bourbaki's terms,[2] the second-level classification is 
the classification by "species". Unlike biological taxon-
omy, a space may belong to several species.

 

The third-level classification distinguishes, for example, 
between spaces of different dimension, but does not 
distinguish between a plane of a three-dimensional Eu-
clidean space, treated as a two-dimensional Euclidean 
space, and the set of all pairs of real numbers, also 
treated as a two-dimensional Euclidean space. Likewise 
it does not distinguish between different Euclidean 
models of the same non-Euclidean space. 

More formally, the third level classifies spaces up to iso-
morphism. An isomorphism between two spaces is de-
fined as a one-to-one correspondence between the 
points of the first space and the points of the second 
space, that preserves all relations stipulated according 
to the first level. Mutually isomorphic spaces are 
thought of as copies of a single space. If one of them be-
longs to a given species then they all do. 

The notion of isomorphism sheds light on the upper-
level classification. Given a one-to-one correspondence 
between two spaces of the same upper-level class, one 
may ask whether it is an isomorphism or not. This ques-
tion makes no sense for two spaces of different classes. 

An isomorphism to itself is called an automorphism. Au-
tomorphisms of a Euclidean space are shifts, rotations, 
reflections and compositions of these. Euclidean space 
is homogeneous in the sense that every point can be 
transformed into every other point by some automor-
phism. 

Euclidean axioms[details 2] leave no freedom; they deter-
mine uniquely all geometric properties of the space. 
More exactly: all three-dimensional Euclidean spaces 
are mutually isomorphic. In this sense we have "the" 
three-dimensional Euclidean space. In Bourbaki's 
terms, the corresponding theory is univalent. In con-
trast, topological spaces are generally non-isomorphic; 
their theory is multivalent. A similar idea occurs in 
mathematical logic: a theory is called categorical if all 
its models of the same cardinality are mutually isomor-
phic. According to Bourbaki,[8] the study of multivalent 
theories is the most striking feature which distinguishes 
modern mathematics from classical mathematics. 
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Relations between species of spaces 

Topological notions (continuity, convergence, open 
sets, closed sets etc.) are defined naturally in every Eu-
clidean space. In other words, every Euclidean space is 
also a topological space. Every isomorphism between 
two Euclidean spaces is also an isomorphism between 
the corresponding topological spaces (called 
"homeomorphism"), but the converse is wrong: a ho-
meomorphism may distort distances. In Bourbaki's 
terms,[2] "topological space" is an underlying structure 
of the "Euclidean space" structure. Similar ideas occur 
in category theory: the category of Euclidean spaces is 
a concrete category over the category of topological 
spaces; the forgetful (or "stripping") functor maps the 
former category to the latter category. 

A three-dimensional Euclidean space is a special case of 
a Euclidean space. In Bourbaki's terms,[2] the species of 
three-dimensional Euclidean space is richer than the 
species of Euclidean space. Likewise, the species of 
compact topological space is richer than the species of 
topological space. 

Such relations between species of spaces may be ex-
pressed diagrammatically as shown in Fig. 3. An arrow 
from A to B means that every A-space is also a B-space, 
or may be treated as a B-space, or provides a B-space, 
etc. Treating A and B as classes of spaces one may in-
terpret the arrow as a transition from A to B. (In Bour-
baki's terms,[9] "procedure of deduction" of a B-space 
from a A-space. Not quite a function unless the classes 
A,B are sets; this nuance does not invalidate the follow-
ing.) The two arrows on Fig. 3 are not invertible, but for 
different reasons. 

The transition from "Euclidean" to "topological" is for-
getful. Topology distinguishes continuous from discon-
tinuous, but does not distinguish rectilinear from curvi-
linear. Intuition tells us that the Euclidean structure can-
not be restored from the topology. A proof uses an au-
tomorphism of the topological space (that is, self-ho-
meomorphism) that is not an automorphism of the Eu-
clidean space (that is, not a composition of shifts, rota-
tions and reflections). Such transformation turns the 
given Euclidean structure into a (isomorphic but) differ-
ent Euclidean structure; both Euclidean structures cor-
respond to a single topological structure. 

In contrast, the transition from "3-dim Euclidean" to 
"Euclidean" is not forgetful; a Euclidean space need not 
be 3-dimensional, but if it happens to be 3-dimensional, 
it is full-fledged, no structure is lost. In other words, the 
latter transition is injective (one-to-one), while the for-

mer transition is not injective (many-to-one). We de-
note injective transitions by an arrow with a barbed tail, 
"↣" rather than "→". 

Both transitions are not surjective, that is, not every B-
space results from some A-space. First, a 3-dim Euclid-
ean space is a special (not general) case of a Euclidean 
space. Second, a topology of a Euclidean space is a spe-
cial case of topology (for instance, it must be non-com-
pact, and connected, etc). We denote surjective transi-
tions by a two-headed arrow, "↠" rather than "→". See 
for example Fig. 4; there, the arrow from "real linear 
topological" to "real linear" is two-headed, since every 
real linear space admits some (at least one) topology 
compatible with its linear structure. 

Such topology is non-unique in general, but unique 
when the real linear space is finite-dimensional. For 
these spaces the transition is both injective and surjec-
tive, that is, bijective; see the arrow from "finite-dim 
real linear topological" to "finite-dim real linear" on Fig. 
4. The inverse transition exists (and could be shown by 
a second, backward arrow). The two species of struc-
tures are thus equivalent. In practice, one makes no dis-
tinction between equivalent species of structures.[10] 
Equivalent structures may be treated as a single struc-
ture, as shown by a large box on Fig. 4. 

The transitions denoted by the arrows obey isomor-
phisms. That is, two isomorphic A-spaces lead to two 
isomorphic B-spaces. 

The diagram on Fig. 4 is commutative. That is, all di-
rected paths in the diagram with the same start and 
endpoints lead to the same result. Other diagrams be-
low are also commutative, except for dashed arrows on 
Fig. 9. The arrow from "topological" to "measurable" is 
dashed for the reason explained there: "In order to turn 
a topological space into a measurable space one en-
dows it with a σ-algebra. The σ-algebra of Borel sets is 
the most popular, but not the only choice." A solid ar-
row denotes a prevalent, so-called "canonical" transi-
tion that suggests itself naturally and is widely used, of-
ten implicitly, by default. For example, speaking about 
a continuous function on a Euclidean space, one need 
not specify its topology explicitly. In fact, alternative to-
pologies exist and are used sometimes, for example, 

 
 

Figure 3 | Diagram of relations between species of spaces 
(example) 
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the fine topology; but these are always specified explic-
itly, since they are much less notable that the prevalent 
topology. A dashed arrow indicates that several transi-
tions are in use and no one is quite prevalent. 

Types of spaces 

Linear and topological spaces 

Two basic spaces are linear spaces (also called vector 
spaces) and topological spaces. 

Linear spaces are of algebraic nature; there are real lin-
ear spaces (over the field of real numbers), complex lin-
ear spaces (over the field of complex numbers), and 
more generally, linear spaces over any field. Every com-
plex linear space is also a real linear space (the latter un-
derlies the former), since each real number is also a 
complex number.[details 3] More generally, a vector space 
over a field also has the structure of a vector space over 
a subfield of that field. Linear operations, given in a lin-
ear space by definition, lead to such notions as straight 
lines (and planes, and other linear subspaces); parallel 
lines; ellipses (and ellipsoids). However, it is impossible 
to define orthogonal (perpendicular) lines, or to single 
out circles among ellipses, because in a linear space 
there is no structure like a scalar product that could be 
used for measuring angles. The dimension of a linear 
space is defined as the maximal number of linearly in-
dependent vectors or, equivalently, as the minimal 
number of vectors that span the space; it may be finite 
or infinite. Two linear spaces over the same field are iso-
morphic if and only if they are of the same dimension. A 
n-dimensional complex linear space is also a 2n-dimen-
sional real linear space. 

Topological spaces are of analytic nature. Open sets, 
given in a topological space by definition, lead to such 

notions as continuous functions, paths, maps; conver-
gent sequences, limits; interior, boundary, exterior. 
However, uniform continuity, bounded sets, Cauchy se-
quences, differentiable functions (paths, maps) remain 
undefined. Isomorphisms between topological spaces 
are traditionally called homeomorphisms; these are 
one-to-one correspondences continuous in both direc-
tions. The open interval(0,1) is homeomorphic to the 
whole real line (-∞,∞) but not homeomorphic to the 
closed interval [0,1], nor to a circle. The surface of a 
cube is homeomorphic to a sphere (the surface of a ball) 
but not homeomorphic to a torus. Euclidean spaces of 
different dimensions are not homeomorphic, which 
seems evident, but is not easy to prove. The dimension 
of a topological space is difficult to define; inductive di-
mension (based on the observation that the dimension 
of the boundary of a geometric figure is usually one less 
than the dimension of the figure itself) and Lebesgue 
covering dimension can be used. In the case of a n-di-
mensional Euclidean space, both topological dimen-
sions are equal to n. 

Every subset of a topological space is itself a topological 
space (in contrast, only linear subsets of a linear space 
are linear spaces). Arbitrary topological spaces, investi-
gated by general topology (called also point-set topol-
ogy) are too diverse for a complete classification up to 
homeomorphism. Compact topological spaces are an 
important class of topological spaces ("species" of this 
"type"). Every continuous function is bounded on such 
space. The closed interval [0,1] and the extended real 
line [-∞,∞] are compact; the open interval (0,1) and the 
line (-∞,∞) are not. Geometric topology investigates 
manifolds (another "species" of this "type"); these are 
topological spaces locally homeomorphic to Euclidean 
spaces (and satisfying a few extra conditions). Low-di-
mensional manifolds are completely classified up to ho-
meomorphism. 

 
 
Figure 4 | Relations between mathematical spaces: linear, topological etc 
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Both the linear and topological structures underly the 
linear topological space (in other words, topological 
vector space) structure. A linear topological space is 
both a real or complex linear space and a topological 
space, such that the linear operations are continuous. 
So a linear space that is also topological is not in general 
a linear topological space. 

Every finite-dimensional real or complex linear space is 
a linear topological space in the sense that it carries one 
and only one topology that makes it a linear topological 
space. The two structures, "finite-dimensional real or 
complex linear space" and "finite-dimensional linear 
topological space", are thus equivalent, that is, mutu-
ally underlying. Accordingly, every invertible linear 
transformation of a finite-dimensional linear topologi-
cal space is a homeomorphism. The three notions of di-
mension (one algebraic and two topological) agree for 
finite-dimensional real linear spaces. In infinite-dimen-
sional spaces, however, different topologies can con-
form to a given linear structure, and invertible linear 
transformations are generally not homeomorphisms. 

Affine and projective spaces 

It is convenient to introduce affine and projective 
spaces by means of linear spaces, as follows. A n-di-
mensional linear subspace of a (n+1)-dimensional linear 
space, being itself a n-dimensional linear space, is not 
homogeneous; it contains a special point, the origin. 
Shifting it by a vector external to it, one obtains a n-di-
mensional affine subspace. It is homogeneous. An af-
fine space need not be included into a linear space, but 
is isomorphic to an affine subspace of a linear space. All 
n-dimensional affine spaces are mutually isomorphic. In 
the words of John Baez, "an affine space is a vector 
space that's forgotten its origin". In particular, every lin-
ear space is also an affine space. 

Given an n-dimensional affine subspace A in a (n+1)-di-
mensional linear space L, a straight line in A may be de-
fined as the intersection of A with a two-dimensional 
linear subspace of L that intersects A: in other words, 

with a plane through the origin that is not parallel to A. 
More generally, a k-dimensional affine subspace of A is 
the intersection of A with a (k+1)-dimensional linear 
subspace of L that intersects A. 

Every point of the affine subspace A is the intersection 
of A with a one-dimensional linear subspace of L. How-
ever, some one-dimensional subspaces of L are parallel 
to A; in some sense, they intersect A at infinity. The set 
of all one-dimensional linear subspaces of a (n+1)-di-
mensional linear space is, by definition, a n-dimensional 
projective space. And the affine subspace A is embed-
ded into the projective space as a proper subset. How-
ever, the projective space itself is homogeneous. A 
straight line in the projective space corresponds to a 
two-dimensional linear subspace of the (n+1)-dimen-
sional linear space. More generally, a k-dimensional 
projective subspace of the projective space corresponds 
to a (k+1)-dimensional linear subspace of the (n+1)-di-
mensional linear space, and is isomorphic to the k-di-
mensional projective space. 

Defined this way, affine and projective spaces are of al-
gebraic nature; they can be real, complex, and more 
generally, over any field. 

Every real or complex affine or projective space is also a 
topological space. An affine space is a non-compact 
manifold; a projective space is a compact manifold. In a 
real projective space a straight line is homeomorphic to 
a circle, therefore compact, in contrast to a straight line 
in a linear of affine space. 

Metric and uniform spaces 

Distances between points are defined in a metric space. 
Isomorphisms between metric spaces are called isome-
tries. Every metric space is also a topological space. A 
topological space is called metrizable, if it underlies a 
metric space. All manifolds are metrizable. 

In a metric space, we can define bounded sets and Cau-
chy sequences. A metric space is called complete if all 
Cauchy sequences converge. Every incomplete space is 
isometrically embedded, as a dense subset, into a com-
plete space (the completion). Every compact metric 
space is complete; the real line is non-compact but 
complete; the open interval (0,1) is incomplete. 

Every Euclidean space is also a complete metric space. 
Moreover, all geometric notions immanent to a Euclid-
ean space can be characterized in terms of its metric. 

 

 
 
Figure 5 | Relations between mathematical spaces: affine, 
projective etc 
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For example, the straight segment connecting two 
given points A and C consists of all points B such that 
the distance between A and C is equal to the sum of two 
distances, between A and B and between B and C. 

The Hausdorff dimension (related to the number of 
small balls that cover the given set) applies to metric 
spaces, and can be non-integer (especially for fractals). 
For a n-dimensional Euclidean space, the Hausdorff di-
mension is equal to n. 

Uniform spaces do not introduce distances, but still al-
low one to use uniform continuity, Cauchy sequences 
(or filters or nets), completeness and completion. Every 
uniform space is also a topological space. Every linear 
topological space (metrizable or not) is also a uniform 
space, and is complete in finite dimension but generally 
incomplete in infinite dimension. More generally, every 
commutative topological group is also a uniform space. 
A non-commutative topological group, however, car-
ries two uniform structures, one left-invariant, the 
other right-invariant. 

Normed, Banach, inner product, and Hibert 
spaces 

Vectors in a Euclidean space form a linear space, but 
each vector 𝑥 has also a length, in other words, norm, 
‖𝑥‖. A real or complex linear space endowed with a 
norm is a normed space. Every normed space is both a 
linear topological space and a metric space. A Banach 
space is a complete normed space. Many spaces of se-
quences or functions are infinite-dimensional Banach 
spaces. 

The set of all vectors of norm less than one is called the 
unit ball of a normed space. It is a convex, centrally sym-
metric set, generally not an ellipsoid; for example, it 
may be a polygon (in the plane) or. more generally, a 
polytope (in arbitrary finite dimension). The parallelo-
gram law (called also parallelogram identity) 

‖𝑥 − 𝑦‖2 + ‖𝑥 + 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2 

generally fails in normed spaces, but holds for vectors in 
Euclidean spaces, which follows from the fact that the 
squared Euclidean norm of a vector is its inner product 
with itself, ‖𝑥‖2 = (𝑥, 𝑥). 

An inner product space is a real or complex linear space, 
endowed with a bilinear or respectively sesquilinear 
form, satisfying some conditions and called an inner 
product. Every inner product space is also a normed 
space. A normed space underlies an inner product space 
if and only if it satisfies the parallelogram law, or equiv-
alently, if its unit ball is an ellipsoid. Angles between 
vectors are defined in inner product spaces. A Hilbert 
space is defined as a complete inner product space. 
(Some authors insist that it must be complex, others ad-
mit also real Hilbert spaces.) Many spaces of sequences 
or functions are infinite-dimensional Hilbert spaces. Hil-
bert spaces are very important for quantum theory.[11] 

All n-dimensional real inner product spaces are mutu-
ally isomorphic. One may say that the n-dimensional 
Euclidean space is the n-dimensional real inner product 
space that forgot its origin. 

 
 
Figure 6 | Relations between mathematical spaces: metric, uniform etc 

 
 

Figure 7 | Relations between mathematical spaces: normed, Banach etc 
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Smooth and Riemannian mani-
folds 

Smooth manifolds are not called "spaces", 
but could be. Every smooth manifold is a 
topological manifold, and can be embed-
ded into a finite-dimensional linear space. 
Smooth surfaces in a finite-dimensional lin-
ear space are smooth manifolds: for exam-
ple, the surface of an ellipsoid is a smooth 
manifold, a polytope is not. Real or com-
plex finite-dimensional linear, affine and 
projective spaces are also smooth mani-
folds. 

At each one of its points, a smooth path in a smooth 
manifold has a tangent vector that belongs to the man-
ifold's tangent space at this point. Tangent spaces to an 
n-dimensional smooth manifold are n-dimensional lin-
ear spaces. The differential of a smooth function on a 
smooth manifold provides a linear functional on the 
tangent space at each point. 

A Riemannian manifold, or Riemann space, is a smooth 
manifold whose tangent spaces are endowed with inner 
products satisfying some conditions. Euclidean spaces 
are also Riemann spaces. Smooth surfaces in Euclidean 
spaces are Riemann spaces. A hyperbolic non-Euclid-
ean space is also a Riemann space. A curve in a Riemann 
space has a length, and the length of the shortest curve 
between two points defines a distance, such that the 
Riemann space is a metric space. The angle between 
two curves intersecting at a point is the angle between 
their tangent lines. 

Waiving positivity of inner products on tangent spaces, 
one obtains pseudo-Riemann spaces, including the Lo-
rentzian spaces that are very important for general rel-
ativity. 

Measurable, measure, and probability 
spaces 

Waiving distances and angles while retaining volumes 
(of geometric bodies) one reaches measure theory. Be-
sides the volume, a measure 
generalizes the notions of 
area, length, mass (or charge) 
distribution, and also probabil-
ity distribution, according to 
Andrey Kolmogorov's ap-
proach to probability theory. 

A "geometric body" of classical 
mathematics is much more 
regular than just a set of points. 

The boundary of the body is of zero volume. Thus, the 
volume of the body is the volume of its interior, and the 
interior can be exhausted by an infinite sequence of cu-
bes. In contrast, the boundary of an arbitrary set of 
points can be of non-zero volume (an example: the set 
of all rational points inside a given cube). Measure the-
ory succeeded in extending the notion of volume to a 
vast class of sets, the so-called measurable sets. Indeed, 
non-measurable sets almost never occur in applica-
tions. 

Measurable sets, given in a measurable space by defini-
tion, lead to measurable functions and maps. In order to 
turn a topological space into a measurable space one 
endows it with a σ-algebra. The σ-algebra of Borel sets 
is the most popular, but not the only choice. (Baire sets, 
universally measurable sets, etc, are also used some-
times.) The topology is not uniquely determined by the 
Borel σ-algebra; for example, the norm topology and 
the weak topology on a separable Hilbert space lead to 
the same Borel σ-algebra. Not every σ-algebra is the 
Borel σ-algebra of some topology.[details 4] Actually, a σ-
algebra can be generated by a given collection of sets 
(or functions) irrespective of any topology. Every subset 
of a measurable space is itself a measurable space. 

Standard measurable spaces (also called standard Borel 
spaces) are especially useful due to some similarity to 
compact spaces (see EoM). Every bijective measurable 
mapping between standard measurable spaces is an 

 
 

Figure 8 | Relations between mathematical spaces: smooth, Riemannian etc 

 
 

Figure 9 | Relations between mathematical spaces: measurable, measure etc 
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isomorphism; that is, the inverse mapping is also meas-
urable. And a mapping between such spaces is measur-
able if and only if its graph is measurable in the product 
space. Similarly, every bijective continuous mapping 
between compact metric spaces is a homeomorphism; 
that is, the inverse mapping is also continuous. And a 
mapping between such spaces is continuous if and only 
if its graph is closed in the product space. 

Every Borel set in a Euclidean space (and more gener-
ally, in a complete separable metric space), endowed 
with the Borel σ-algebra, is a standard measurable 
space. All uncountable standard measurable spaces are 
mutually isomorphic. 

A measure space is a measurable space endowed with a 
measure. A Euclidean space with the Lebesgue meas-
ure is a measure space. Integration theory defines inte-
grability and integrals of measurable functions on a 
measure space. 

Sets of measure 0, called null sets, are negligible. Ac-
cordingly, a "mod 0 isomorphism" is defined as isomor-
phism between subsets of full measure (that is, with 
negligible complement). 

A probability space is a measure space such that the 
measure of the whole space is equal to 1. The product 
of any family (finite or not) of probability spaces is a 
probability space. In contrast, for measure spaces in 
general, only the product of finitely many spaces is de-
fined. Accordingly, there are many infinite-dimensional 
probability measures (especially, Gaussian measures), 
but no infinite-dimensional Lebesgue measures. 

Standard probability spaces are especially useful. On a 
standard probability space a conditional expectation 
may be treated as the integral over the conditional 
measure (regular conditional probabilities, see also dis-
integration of measure). Given two standard probability 
spaces, every homomorphism of their measure alge-
bras is induced by some measure preserving map. Every 
probability measure on a standard measurable space 
leads to a standard probability space. The product of a 
sequence (finite or not) of standard probability spaces 
is a standard probability space. All non-atomic standard 
probability spaces are mutually isomorphic mod 0; one 
of them is the interval (0,1) with the Lebesgue measure. 

These spaces are less geometric. In particular, the idea 
of dimension, applicable (in one form or another) to all 
other spaces, does not apply to measurable, measure 
and probability spaces. 

Non-commutative geometry 

The theoretical study of calculus, known as mathemat-
ical analysis, led in the early 20th century to the consid-
eration of linear spaces of real-valued or complex-val-
ued functions. The earliest examples of these were 
function spaces, each one adapted to its own class of 
problems. These examples shared many common fea-
tures, and these features were soon abstracted into Hil-
bert spaces, Banach spaces, and more general topolog-
ical vector spaces. These were a powerful toolkit for the 
solution of a wide range of mathematical problems. 

The most detailed information was carried by a class of 
spaces called Banach algebras. These are Banach 
spaces together with a continuous multiplication oper-
ation. An important early example was the Banach al-
gebra of essentially bounded measurable functions on 
a measure space X. This set of functions is a Banach 
space under pointwise addition and scalar multiplica-
tion. With the operation of pointwise multiplication, it 
becomes a special type of Banach space, one now called 
a commutative von Neumann algebra. Pointwise multi-
plication determines a representation of this algebra on 
the Hilbert space of square integrable functions on X. 
An early observation of John von Neumann was that 
this correspondence also worked in reverse: Given 
some mild technical hypotheses, a commutative von 
Neumann algebra together with a representation on a 
Hilbert space determines a measure space, and these 
two constructions (of a von Neumann algebra plus a 
representation and of a measure space) are mutually in-
verse. 

Von Neumann then proposed that non-commutative 
von Neumann algebras should have geometric mean-
ing, just as commutative von Neumann algebras do. To-
gether with Francis Murray, he produced a classification 
of von Neumann algebras. The direct integral construc-
tion shows how to break any von Neumann algebra into 
a collection of simpler algebras called factors. Von Neu-
mann and Murray classified factors into three types. 
Type I was nearly identical to the commutative case. 
Types II and III exhibited new phenomena. A type II von 
Neumann algebra determined a geometry with the pe-
culiar feature that the dimension could be any non-neg-
ative real number, not just an integer. Type III algebras 
were those that were neither types I nor II, and after 
several decades of effort, these were proven to be 
closely related to type II factors. 

A slightly different approach to the geometry of func-
tion spaces developed at the same time as von Neu-
mann and Murray's work on the classification of factors. 
This approach is the theory of C*-algebras. Here, the 
motivating example is the C*-algebra 𝐶0(𝑋), where X is 
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a locally compact Hausdorff topological space. By defi-
nition, this is the algebra of continuous complex-valued 
functions on X that vanish at infinity (which loosely 
means that the farther you go from a chosen point, the 
closer the function gets to zero) with the operations of 
pointwise addition and multiplication. The Gelfand–
Naimark theorem implied that there is a correspond-
ence between commutative C*-algebras and geomet-
ric objects: Every commutative C*-algebra is of the 
form  𝐶0(𝑋) for some locally compact Hausdorff space 
X. Consequently it is possible to study locally compact 
Hausdorff spaces purely in terms of commutative C*-
algebras. Non-commutative geometry takes this as in-
spiration for the study of non-commutative C*-alge-
bras: If there were such a thing as a "non-commutative 
space X," then its  𝐶0(𝑋) would be a non-commutative 
C*-algebra; if in addition the Gelfand–Naimark theo-
rem applied to these non-existent objects, then spaces 
(commutative or not) would be the same as C*-alge-
bras; so, for lack of a direct approach to the definition of 
a non-commutative space, a non-commutative space is 
defined to be a non-commutative C*-algebra. Many 
standard geometric tools can be restated in terms of 
C*-algebras, and this gives geometrically-inspired 
techniques for studying non-commutative C*-algebras. 

Both of these examples are now cases of a field called 
non-commutative geometry. The specific examples of 
von Neumann algebras and C*-algebras are known as 
non-commutative measure theory and non-commuta-
tive topology, respectively. Non-commutative geome-
try is not merely a pursuit of generality for its own sake 
and is not just a curiosity. Non-commutative spaces 
arise naturally, even inevitably, from some construc-
tions. For example, consider the non-periodic Penrose 
tilings of the plane by kites and darts. It is a theorem 
that, in such a tiling, every finite patch of kites and darts 
appears infinitely often. As a consequence, there is no 
way to distinguish two Penrose tilings by looking at a 
finite portion. This makes it impossible to assign the set 
of all tilings a topology in the traditional sense. Despite 
this, the Penrose tilings determine a non-commutative 

C*-algebra, and consequently they can be studied by 
the techniques of non-commutative geometry. An-
other example, and one of great interest within differ-
ential geometry, comes from foliations of manifolds. 
These are ways of splitting the manifold up into smaller-
dimensional submanifolds called leaves, each of which 
is locally parallel to others nearby. The set of all leaves 
can be made into a topological space. However, the ex-
ample of an irrational rotation shows that this topolog-
ical space can be inacessible to the techniques of classi-
cal measure theory. However, there is a non-commuta-
tive von Neumann algebra associated to the leaf space 
of a foliation, and once again, this gives an otherwise 
unintelligible space a good geometric structure. 

Schemes 

Algebraic geometry studies the geometric properties of 
polynomial equations. Polynomials are a type of func-
tion defined from the basic arithmetic operations of ad-
dition and multiplication. Because of this, they are 
closely tied to algebra. Algebraic geometry offers a way 
to apply geometric techniques to questions of pure al-
gebra, and vice versa. 

Prior to the 1940s, algebraic geometry worked exclu-
sively over the complex numbers, and the most funda-
mental variety was projective space. The geometry of 
projective space is closely related to the theory of per-
spective, and its algebra is described by homogeneous 
polynomials. All other varieties were defined as subsets 
of projective space. Projective varieties were subsets 
defined by a set of homogeneous polynomials. At each 
point of the projective variety, all the polynomials in the 
set were required to equal zero. The complement of the 
zero set of a linear polynomial is an affine space, and an 
affine variety was the intersection of a projective vari-
ety with an affine space. 

André Weil saw that geometric reasoning could some-
times be applied in number-theoretic situations where 
the spaces in question might be discrete or even finite. 
In pursuit of this idea, Weil rewrote the foundations of 

 
 

Figure 10 | Relations between mathematical spaces: schemes, stacks etc 
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algebraic geometry, both freeing algebraic geometry 
from its reliance on complex numbers and introducing 
abstract algebraic varieties which were not embedded in 
projective space. These are now simply called varieties. 

The type of space that underlies most modern algebraic 
geometry is even more general than Weil's abstract al-
gebraic varieties. It was introduced by Alexander 
Grothendieck and is called a scheme. One of the moti-
vations for scheme theory is that polynomials are unu-
sually structured among functions, and algebraic varie-
ties are consequently rigid. This presents problems 
when attempting to study degenerate situations. For 
example, almost any pair of points on a circle deter-
mines a unique line called the secant line, and as the two 
points move around the circle, the secant line varies 
continuously. However, when the two points collide, 
the secant line degenerates to a tangent line. The tan-
gent line is unique, but the geometry of this configura-
tion—a single point on a circle—is not expressive 
enough to determine a unique line. Studying situations 
like this requires a theory capable of assigning extra 
data to degenerate situations. 

One of the building blocks of a scheme is a topological 
space. Topological spaces have continuous functions, 
but continuous functions are too general to reflect the 
underlying algebraic structure of interest. The other in-
gredient in a scheme, therefore, is a sheaf on the topo-
logical space, called the "structure sheaf". On each open 
subset of the topological space, the sheaf specifies a 
collection of functions, called "regular functions". The 
topological space and the structure sheaf together are 
required to satisfy conditions that mean the functions 
come from algebraic operations. 

Like manifolds, schemes are defined as spaces that are 
locally modeled on a familiar space. In the case of man-
ifolds, the familiar space is Euclidean space. For a 
scheme, the local models are called affine schemes. Af-
fine schemes provide a direct link between algebraic ge-
ometry and commutative algebra. The fundamental 
objects of study in commutative algebra are commuta-
tive rings. If 𝑅 is a commutative ring, then there is a cor-
responding affine scheme Spec 𝑅 which translates the 
algebraic structure of 𝑅 into geometry. Conversely, 
every affine scheme determines a commutative ring, 
namely, the ring of global sections of its structure sheaf. 
These two operations are mutually inverse, so affine 
schemes provide a new language with which to study 
questions in commutative algebra. By definition, every 
point in a scheme has an open neighborhood which is 
an affine scheme. 

There are many schemes that are not affine. In particu-
lar, projective spaces satisfy a condition called proper-
ness which is analogous to compactness. Affine 
schemes cannot be proper (except in trivial situations 
like when the scheme has only a single point), and 
hence no projective space is an affine scheme (except 
for zero-dimensional projective spaces). Projective 
schemes, meaning those that arise as closed sub-
schemes of a projective space, are the single most im-
portant family of schemes.[12] 

Several generalizations of schemes have been intro-
duced. Michael Artin defined an algebraic space as the 
quotient of a scheme by the equivalence relations that 
define étale morphisms. Algebraic spaces retain many 
of the useful properties of schemes while simultane-
ously being more flexible. For instance, the Keel–Mori 
theorem can be used to show that many moduli spaces 
are algebraic spaces. 

More general than an algebraic space is a Deligne–
Mumford stack. DM stacks are similar to schemes, but 
they permit singularities that cannot be described 
solely in terms of polynomials. They play the same role 
for schemes that orbifolds do for manifolds. For exam-
ple, the quotient of the affine plane by a finite group of 
rotations around the origin yields a Deligne–Mumford 
stack that is not a scheme or an algebraic space. Away 
from the origin, the quotient by the group action iden-
tifies finite sets of equally spaced points on a circle. But 
at the origin, the circle consists of only a single point, 
the origin itself, and the group action fixes this point. In 
the quotient DM stack, however, this point comes with 
the extra data of being a quotient. This kind of refined 
structure is useful in the theory of moduli spaces, and in 
fact, it was originally introduced to describe moduli of 
algebraic curves. 

A further generalization are the algebraic stacks, also 
called Artin stacks. DM stacks are limited to quotients 
by finite group actions. While this suffices for many 
problems in moduli theory, it is too restrictive for oth-
ers, and Artin stacks permit more general quotients. 

Topoi 

In Grothendieck's work on the Weil conjectures, he in-
troduced a new type of topology now called a 
Grothendieck topology. A topological space (in the or-
dinary sense) axiomatizes the notion of "nearness," 
making two points be nearby if and only if they lie in 
many of the same open sets. By contrast, a Grothend-
ieck topology axiomatizes the notion of "covering". A 
covering of a space is a collection of subspaces that 
jointly contain all the information of the ambient space. 
Since sheaves are defined in terms of coverings, a 
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Grothendieck topology can also be seen as an axiomati-
zation of the theory of sheaves. 
Grothendieck's work on his topologies led him to the 
theory of topoi. In his memoir Récoltes et Semailles, he 
called them his "most vast conception".[13] A sheaf (ei-
ther on a topological space or with respect to a 
Grothendieck topology) is used to express local data. 
The category of all sheaves carries all possible ways of 
expressing local data. Since topological spaces are con-
structed from points, which are themselves a kind of lo-
cal data, the category of sheaves can therefore be used 
as a replacement for the original space. Grothendieck 
consequently defined a topos to be a category of 
sheaves and studied topoi as objects of interest in their 
own right. These are now called Grothendieck topoi. 

Every topological space determines a topos, and vice 
versa. There are topological spaces where taking the as-
sociated topos loses information, but these are gener-
ally considered pathological. (A necessary and suffi-
cient condition is that the topological space be a sober 
space.) Conversely, there are topoi whose associated 
topological spaces do not capture the original topos. 
But, far from being pathological, these topoi can be of 
great mathematical interest. For instance, Grothend-
ieck's theory of étale cohomology (which eventually led 
to the proof of the Weil conjectures) can be phrased as 
cohomology in the étale topos of a scheme, and this 
topos does not come from a topological space. 

Topological spaces in fact lead to very special topoi 
called locales. The set of open subsets of a topological 
space determines a lattice. The axioms for a topological 
space cause these lattices to be complete Heyting alge-
bras. The theory of locales takes this as its starting 
point. A locale is defined to be a complete Heyting alge-
bra, and the elementary properties of topological 
spaces are re-expressed and reproved in these terms. 
The concept of a locale turns out to be more general 
than a topological space, in that every sober topological 
space determines a unique locale, but many interesting 
locales do not come from topological spaces. Because 
locales need not have points, the study of locales is 
somewhat jokingly called pointless topology. 

Topoi also display deep connections to mathematical 
logic. Every Grothendieck topos has a special sheaf 
called a subobject classifier. This subobject classifier 

functions like the set of all possible truth values. In the 
topos of sets, the subobject classifier is the set {0,1}, 
corresponding to "False" and "True". But in other topoi, 
the subobject classifier can be much more complicated. 
Lawvere and Tierney recognized that axiomatizing the 
subobject classifier yielded a more general kind of 
topos, now known as an elementary topos, and that el-
ementary topoi were models of intuitionistic logic. In 
addition to providing a powerful way to apply tools 
from logic to geometry, this made possible the use of 
geometric methods in logic. 

Spaces and structures 

According to Kevin Carlson, 

Neither of these words ["space" and "structure"] have a single 
mathematical definition. The English words can be used in es-
sentially all the same situations, but you often think of a "space" 
as more geometric and a "structure" as more algebraic. [...] So 
you could think of "structures" as places we do algebra, and 
"spaces" as places we do geometry. Then a lot of great mathe-
matics has come from passing from structures to spaces and 
vice versa, as when we look at the fundamental group of a top-
ological space or the spectrum of a ring. But in the end, the dis-
tinction is neither hard nor fast and only goes so far: many 
things are obviously both structures and spaces, some things are 
not obviously either, and some people might well disagree with 
everything I've said here.[1] 

Nevertheless, a general definition of "structure" was 
proposed by Bourbaki[2]; it embraces all types of spaces 
mentioned above, (nearly?) all types of mathematical 
structures used till now, and more. It provides a general 
definition of isomorphism, and justifies transfer of 
properties between isomorphic structures. However, it 
was never used actively in mathematical practice (not 
even in the mathematical treatises written by Bourbaki 
himself). Here are the last phrases from a review by 
Robert Reed[14] of a book by Leo Corry: 

Corry does not seem to feel that any formal definition of struc-
ture could do justice to the use of the concept in actual mathe-
matical practice [...] Corry's view could be summarized as the 
belief that 'structure' refers essentially to a way of doing math-
ematics, and is therefore a concept probably just as far from be-
ing precisely definable as the cultural artifact of mathematics it-
self. 

 
 

Figure 11 | Relations between mathematical spaces: locales, topoi etc 

https://doi.org/10.15347/wjs/2018.002
https://en.wikipedia.org/wiki/topos_(mathematics)
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Spaces_in_mathematics#cite_note-18
https://en.wikipedia.org/wiki/category_(mathematics)
https://en.wikipedia.org/wiki/Grothendieck_topos
https://en.wikipedia.org/wiki/sober_space
https://en.wikipedia.org/wiki/sober_space
https://en.wikipedia.org/wiki/%C3%A9tale_cohomology
https://en.wikipedia.org/wiki/locale_(mathematics)
https://en.wikipedia.org/wiki/lattice_(order)
https://en.wikipedia.org/wiki/complete_Heyting_algebra
https://en.wikipedia.org/wiki/complete_Heyting_algebra
https://en.wikipedia.org/wiki/pointless_topology
https://en.wikipedia.org/wiki/William_Lawvere
https://en.wikipedia.org/wiki/Myles_Tierney
https://en.wikipedia.org/wiki/elementary_topos
https://en.wikipedia.org/wiki/intuitionistic_logic
https://en.wikipedia.org/wiki/Fundamental_group
https://en.wikipedia.org/wiki/Spectrum_of_a_ring
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Spaces_in_mathematics#cite_note-carlson-2
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Spaces_in_mathematics#cite_note-BS-5
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Spaces_in_mathematics#Types_of_spaces
https://en.wikiversity.org/wiki/WikiJournal_of_Science/Spaces_in_mathematics#cite_note-19


WikiJournal of Science, 2018, 1(1):2 
doi: 10.15347/wjs/002 

Encyclopedic Review Article 
   

 

14 of 14 | WikiJournal of Science  

For more information on mathematical structures see 
Wikipedia: mathematical structure, equivalent defini-
tions of mathematical structures, and transport of 
structure. 

The distinction between geometric "spaces" and alge-
braic "structures" is sometimes clear, sometimes elu-
sive. Clearly, groups are algebraic, while Euclidean 
spaces are geometric. Modules over rings are as alge-
braic as groups. In particular, when the ring appears to 
be a field, the module appears to be a linear space; is it 
algebraic or geometric? In particular, when it is finite-
dimensional, over real numbers, and endowed with in-
ner product, it becomes Euclidean space; now geomet-
ric. The (algebraic?) field of real numbers is the same as 
the (geometric?) real line. Its algebraic closure, the (al-
gebraic?) field of complex numbers, is the same as the 
(geometric?) complex plane. It is first of all "a place we 
do analysis" (rather than algebra or geometry). 

Every space treated in Section "Types of spaces" above, 
except for "Non-commutative geometry", "Schemes" 
and "Topoi" subsections, is a set (the "principal base 
set" of the structure, according to Bourbaki) endowed 
with some additional structure; elements of the base 
set are usually called "points" of this space. In contrast, 
elements of (the base set of) an algebraic structure usu-
ally are not called "points". 

However, sometimes one uses more than one principal 
base set. For example, two-dimensional projective ge-
ometry may be formalized via two base sets, the set of 
points and the set of lines. Moreover, a striking feature 
of projective planes is the symmetry of the roles played 
by points and lines. A less geometric example: a graph 
may be formalized via two base sets, the set of vertices 
(called also nodes or points) and the set of edges (called 
also arcs or lines). Generally, finitely many principal 
base sets and finitely many auxiliary base sets are stip-
ulated by Bourbaki. 

Many mathematical structures of geometric flavor 
treated in the "Non-commutative geometry", 
"Schemes" and "Topoi" subsections above do not stipu-
late a base set of points. For example, "pointless topol-
ogy" (in other words, point-free topology, or locale the-
ory) starts with a single base set whose elements imi-
tate open sets in a topological space (but are not sets of 
points); see also mereotopology and point-free geome-
try 
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Details 
1. Similarly, several types of numbers are in use (natural, integral, rational, 

real, complex); each one has its own definition; but just "number" is not 
used as a mathematical notion and has no definition. 

2. Reformed by Hilbert, Tarski and Birkhoff in order to avoid hidden 
assumptions found in Euclid's Elements. 

3. For example, the complex plane treated as a one-dimensional complex 
linear space may be downgraded to a two-dimensional real linear space. In 
contrast, the real line can be treated as a one-dimensional real linear space 
but not a complex linear space. See also field extensions. 

4. The space 2ℝ (equipped with its tensor product σ-algebra) has a 
measurable structure which is not generated by a topology. A slick proof 
can be found in this answer on MathOverflow. 
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