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A GOVERNOR is a part of a machine by means of which the velocity of the
machine is kept nearly uniform, notwithstanding variations in the driving-power or
the resistance.
Most governors depend on the centrifugal force of a piece connected with a

shaft of the machine. When the velocity increases, this force increases, and either
increases the pressure of the piece against a surface or moves the piece, and so acts
on a break or a valve.
In one class of regulators of machinery, which we may call moderators 1, the

resistance is increased by a quantity depending on the velocity. Thus in some
pieces of clockwork the moderator consists of a conical pendulum revolving within
a circular case. When the velocity increases, the ball of the pendulum presses
against the inside of the case, and the friction checks the increase of velocity.
In Watt’s governor for steam-engines the arms open outwards, and so contract

the aperture of the steam-valve.
In a water-break invented by Professor J. Thomson, when the velocity is in-

creased, water is centrifugally pumped up, and overflows with a great velocity, and
the work is spent in lifting and communicating this velocity to the water.
In all these contrivances an increase of driving-power produces an increase of

velocity, though a much smaller increase than would be produced without the mod-
erator.
But if the part acted on by centrifugal force, instead of acting directly on the

machine, sets in motion a contrivance which continually increases the resistance
as long as the velocity is above its normal value, and reverses its action when the
velocity is below that value, the governor will bring the velocity to the same normal
value whatever variation (within the working limits of the machine) be made in the
driving-power or the resistance.
I propose at present, without entering into any details of mechanism to direct

the attention of engineers and mathematicians to the dynamical theory of such
governors.
It will be seen that the motion of a machine with its governor consists in general

of a uniform motion, combined with a disturbance which may be expressed as the
sum of several component motions. These components may be of four different
kinds :-

(1) The disturbance may continually increase.
(2) It may continually diminish.
(3) It may be an oscillation of continually increasing amplitude.
(4) It may be an oscillation of continually decreasing amplitude.

1See Mr C. W. Siemens “On Uniform Rotation,”Phil. Trans. 1866, p. 657.
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The first and third cases are evidently inconsistent with the stability of the
motion; and the second and fourth alone are admissible in a good governor. This
condition is mathematically equivalent to the condition that all the possible roots,
and all the possible parts of the impossible roots, of a certain equation shall be
negative.
I have not been able completely to determine these conditions for equations of a

higher degree than the third; but I hope that the subject will obtain the attention
of mathematicians.
The actual motions corresponding to these impossible roots are not generally

taken notice of by the inventors of such machines, who naturally confine their
attention to the way in which it is designed to act; and this is generally expressed
by the real root of the equation. If, by altering the adjustments of the machine,
its governing power is continually increased, there is generally a limit at which the
disturbance, instead of subsiding more rapidly, becomes an oscillating and jerking
motion, increasing in violence till it reaches the limit of action of the governor. This
takes place when the possible part of one of the impossible roots becomes positive.
The mathematical investigation of the motion may be rendered practically useful
by pointing out the remedy for these disturbances.
This has been actually done in the case of a governor constructed by Mr Fleeming

Jenkin, with adjustments, by which the regulating power of the governor could be
altered. By altering these adjustments the regulation could be made more and more
rapid, till at last a dancing motion of the governor , accompanied with a jerking
motion of the main shaft, shewed that an alteration had taken place among the
impossible roots of the equation.
I shall consider three kinds of governors, corresponding to the three kinds of

moderators already referred to.
In the first kind, the centrifugal piece has a constant distance from the axis of

motion, but its pressure on a surface on which it rubs varies when the velocity
varies. In the moderator this friction is itself the retarding force. In the governor
this surface is made moveable about the axis, and the friction tends to move it; and
this motion is made to act on a break to retard the machine. A constant force acts
on the moveable wheel in the opposite direction to that of the friction, which takes
off the break when the friction is less than a given quantity.
Mr Jenkin’s governor is on this principle. It has the advantage that the cen-

trifugal piece does not change its position, and that its pressure is always the same
function of the velocity. It has the disadvantage that the normal velocity depends in
some degree on the coefficient of sliding friction between two surfaces which cannot
be kept always in the same condition.
In the second kind of governor, the centrifugal piece is free to move further from

the axis, but is restrained by a force the intensity of which varies with the position
of the centrifugal piece in such a way that, if the velocity of rotation has the normal
value, the centrifugal piece will be in equilibrium in every position. If the velocity
is greater or less than the normal velocity. the centrifugal piece will fly out or fall in
without any limit except the limits of motion of the piece. But a break is arranged
so that it is made more or less powerful according to the distance of the centrifugal
piece from the axis, and thus the oscillations of the centrifugal piece are restrained
within narrow limits.
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Governors have been constructed on this principle by Sir W. Thomson and by M.
Foucault. In the first, the force restraining the centrifugal piece is that of a spring
acting between a point of the centrifugal piece and a fixed point at a considerable
distance, and the break is a friction-break worked by the reaction of the spring on
the fixed point.
In M. Foucault’s arrangement, the force acting on the centrifugal piece is the

weight of the balls acting downward, and an upward force produced by weights
acting on a combination of levers and tending to raise the balls. The resultant
vertical force on the balls is proportional to their depth below the centre of motion,
which ensures a constant normal velocity. The break is :- in the first place, the
variable friction between the combination of levers and the ring on the shaft on
which the force is made to act; and, in the second place, a centrifugal air-fan
through. which more or less air is allowed to pass, according to the, position of the
levers. Both these causes tend to regulate the velocity according to the same law.
The governors designed by the Astronomer-Royal on Mr Siemens’s principle for

the chronograph and equatorial of Greenwich Observatory depend on nearly similar
conditions. The centrifugal piece is here a long conical pendulum, not far removed
from the vertical, and it is prevented from deviating much from a fixed angle by
the driving-force being rendered nearly constant by means of a differential system.
The break of the pendulum consists of a fan which dips into a liquid more or less,
according to the angle of the pendulum with the vertical. The break of the principal
shaft is worked by the differential apparatus; and the smoothness of motion of the
principal shaft is ensured by connecting it with a fly-wheel.
In the third kind of governor a liquid is pumped up and thrown out over the

sides of a revolving cup. In the governor on this principle, described by Mr C. W.
Siemens, the cup is connected with its axis by a screw and a spring, in such a way
that if the axis gets ahead of the cup the cup is lowered and more liquid is pumped
up; If this adjustment can be made perfect, the normal velocity of the cup will
remain the same through a considerable range of driving-power.
It appears from the investigations that the oscillations in the motion must be

checked by some force resisting the motion of oscillation. This may be done in some
cases by connecting the oscillating body with a body hanging in a viscous liquid,
so that the oscillations cause the body to rise and fall in the liquid.
To check the variations of motion in a revolving shaft, a vessel filled wit 1h

viscous liquid may be attached to the shaft. It will have no effect on uniform
rotation, but will check periodic alterations of speed.
Similar effects are produced by the viscosity of the lubricating matter in the

sliding parts of the machine, and by other unavoidable resistances; so that it is not
always necessary to introduce special contrivances to check oscillations.
I shall call all such resistances, if approximately proportional to the velocity, by

the name of “viscosity”, whatever be their true origin.
In several contrivances a differential system of wheel-work is introduced between

the machine and the governor, so that the driving-power acting on the governor is
nearly constant.
I have pointed out that, under certain conditions, the sudden disturbances of the

machine do not act through the differential system on the governor, or vice versa.
When these conditions are fulfilled, the equations of motion are not only simple,
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but the motion itself is not liable to disturbances depending on the mutual action
of the machine and the governor.

Distinction between Moderators and Governors.

In regulators of the first kind, let P be the driving-power and R the resistance,
both estimated as if applied to a given axis of the machine. Let V be the normal
velocity, estimated for the same axis, and dx/dt the actual velocity, and let M be
the moment of inertia of the whole machine reduced to the given axis.
Let the governor be so arranged as to increase the resistance or diminish the

driving-power by a quantity F (dx/dt− V ), then the equation of motion will be

(1)
d

dt

(

M
dx

dt

)

= P −R− F
(

dx

dt
− V

)

When the machine has obtained its final rate the first term vanishes, and

(2)
dx

dt
= V

P −R
F

Hence, if P is increased or R diminished, the velocity will be permanently increased.
Regulators of this kind, as Mr Siemens 2, has observed, should be called moderators
rather than governors.
In the second kind of regulator, the force F (dx/dt − V ), instead of being ap-

plied directly to the machine, is applied to an independent moving piece, B, which
continually increases the resistance, or diminishes the driving-power, by a quantity
depending on the whole motion of B.
If y represents the whole motion of B, the equation of motion of B is

(3)
d

dt

(

B
dy

dt

)

= F

(

dx

dt
− V

)

and that of M

(4)
d

dt

(

M
dx

dt

)

= P −R− F
(

dx

dt
− V

)

+Gy

where G is the resistance applied by B when B moves through one unit of space.
We can integrate the first of these equations at once, and we find

(5) B
dy

dt
= F (x− V t)

so that if the governor B has come to rest x = V t, and not only is the velocity of
the machine equal to the normal velocity, but the position of the machine is the
same as if no disturbance of the driving-power or resistance had taken place.

Jenkin’s Governor. In a governor of this kind, invented by Mr Fleeming Jenkin,
and used in electrical experiments, a centrifugal piece revolves on the principal axis,
and is kept always at a constant angle by an appendage which slides on the edge of
a loose wheel, B, which works on the same axis. The pressure on the edge of this
wheel would be proportional to the square of the velocity; but a constant portion

2“On Uniform Rotation,”Phil. Trans. 1866, p. 657.
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of this pressure is taken off by a spring which acts on the centrifugal piece. The
force acting on B to turn it round is therefore

F ′
[

dx

dt

]2

− C ′;

and if we remember that the velocity varies within very narrow limits, we may write
the expression

F

(

dx

dt
− V1

)

;

where F is a new constant, and V1 is the lowest limit of velocity within which the
governor will act.
Since this force necessarily acts on B in the positive direction, and since it is

necessary that the break should be taken off as well as put on, a weightW is applied
to B tending to turn it in the negative direction; and, for a reason to be afterwards
explained, this weight is made to hang in a viscous liquid, so as to bring it to rest
quickly.
The equation of motion of B may then be written

(6) B
d2y

dt2
= F

(

dx

dt
− V1

)

− Y
dy

dt
−W,

where Y is a coefficient depending on the viscosity of the liquid and on other
resistances varying with the velocity, and W is the constant weight.
Integrating this equation with respect to t, we find

(7) B
dy

dt
= F (x− V1t)− Y y −Wt

If B has come to rest, we have

(8) x =

(

V1 +
W

F

)

t+
Y

F
y,

or the position of the machine is affected by that of the governor, but the final
velocity is constant, and

(9) V1 +
W

F
= V,

where V1 is the normal velocity.
The equation of motion of the machine itself is

(10) M
d2x

dt2
= P −R− F

(

dx

dt
− V1

)

−Gy

This must be combined with equation (7) to determine the motion of the whole
apparatus. The solution is of the form

(11) x = A1e
n1t +A2e

n2t +A3e
n3t + V t

where n1, n2, n3 are the roots of the cubic equation

(12) MBn3 + (MY + FB)n2 + FY n+ FG = 0

If n be a pair of roots of this equation of the form a ±
√
−1b, then the part of x

corresponding to these roots will be of the form

(13) eat cos(bt+ β).
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If a is a negative quantity, this will indicate an oscillation the amplitude of which
continually decreases. If a is zero, the amplitude will remain constant, and if a is
positive, the amplitude will continually increase.
One root of the equation (12) is evidently a real negative quantity. The condition

that the real part of the other roots should be negative is

(14)

(

F

M
+
Y

B

)

Y

B
−
G

B
= a positive quantity.

This is the condition of stability of the motion. If it is not fulfilled there will be a
dancing motion of the governor, which will increase till it is as great as the limits
of motion of the governor. To ensure this stability, the value of Y must be made
sufficiently great, as compared with G, by placing the weight W in a viscous liquid
if the viscosity of the lubricating materials at the axle is not sufficient.
To determine the value of F , put the break out of gear, and fix the moveable

wheel; then, if V and V ′ be the velocities when the driving-power is P and P ′,

(15) F =
P − P ′

V − V ′

To determine G, let the governor act, and let y and y′ be the positions of the break
when the driving-power is P and P ′ ,then

(16) G =
P − P ′

y − y′
.

General Theory of Chronometric Centrifugal Pieces.

Sir W. Thomson’s and M. Foucault’s Governors. Let A be the moment of
Inertia of a revolving apparatus, and θ the angle of revolution. The equation of
motion is

(17)
d

dt

(

A
dθ

dt

)

= L

where L is the moment of the applied force round the axis. Now, let A be a function
of another variable φ (the divergence of the centrifugal piece), and let the kinetic
energy of the whole be

1
2
A

[

dθ

dt

]2

+ 1
2
B

[

dφ

dt

]2

where B may also be a function of φ, if the centrifugal piece is complex.
If we also assume that P , the potential energy of the apparatus is a function of

φ then the force tending to diminish φ, arising from the action of gravity, springs,
etc., will be dP/dφ.
The whole energy, kinetic and potential, is

(18) E = 1
2
A

[

dθ

dt

]2

+ 1
2
B

[

dφ

dt

]2

+ P =

∫

Ldθ

Differentiating with respect to t, we find

(19)

dφ

dt

(

1
2

dA

dφ

[

dθ

dt

]2

+ 1
2

dB

dφ

[

dφ

dt

]2

+
dP

dφ

)

+A
dθ

dt

d2θ

dt2
+B

dφ

dt

d2φ

dt2

= L
dθ

dt
=
dθ

dt

(

dA

dφ

dθ

dt

dφ

dt
+A

d2θ

dt2

)
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whence we have, by eliminating L,

(20)
d

dt

(

dφ

dt

)

= 1
2

dA

dφ

[

dθ

dt

]2

+ 1
2

dB

dφ

[

dφ

dt

]2

−
dP

dφ

The first two terms of the right-hand side indicate a force tending to increase φ
depending on the squares of the velocities of the main shaft and of the centrifugal
piece. The force indicated by these terms may be called the centrifugal force.
If the apparatus is so arranged that

(21) P = 1
2
Aω2 + const

where ω is a constant velocity, the equation becomes

(22)
d

dt

(

B
dφ

dt

)

= 1
2

dA

dφ

(

[

dθ

dt

]2

− ω2

)

+ 1
2

dB

dφ

[

dφ

dt

]2

In this case the value of φ cannot remain constant unless the angular velocity is
equal to ω.
A shaft with a centrifugal piece arranged on this principle has only one velocity

of rotation without disturbance. If there be a small disturbance, the equations for
the disturbance θ and φ may be written

A
d2θ

dt2
+
dA

dφ
ω
dφ

dt
= L,(23)

B
d2φ

dt2
−
dA

dφ
ω
dθ

dt
= 0.(24)

The period of such small disturbances is (dA/dφ)(AB)−1/2 revolutions of the shaft.
They will neither increase nor diminish if there are no other terms in the equa-

tions.
To convert this apparatus into a governor, let us assume viscosities X and Y in

the motions of the main shaft and the centrifugal piece, and a resistance Gφ applied
to the main shaft. Putting (dA/dφ)ω = K, the equations become

A
d2θ

dt2
+X

dθ

dt
+K

dφ

dt
+Gφ = L,(25)

B
d2φ

dt2
+ Y

dφ

dt
−K

dθ

dt
= 0.(26)

The condition of stability of the motion indicated by these equations is that all the
possible roots, or parts of roots, of the cubic equation

(27) ABn3 + (AY +BX)n2 + (XY +K2)n+GK = o

shall be negative; and this condition is

(28)

(

X

A
+
Y

B

)

(

XY +K2
)

> GK.

Combination of Governors. If the break of Thomson’s governor is applied to a
moveable wheel, as in Jenkin’s governor, and if this wheel works a steam-valve, or
a more powerful break, we have to consider the motion of three pieces. Without
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entering into the calculation of the general equations of motion of these pieces, we
may confine ourselves to the case of small disturbances, and write the equations

(29)

A
d2θ

dt2
+X

dθ

dt
+K

dφ

dt
+ Tφ+ Jψ = P −R,

B
d2φ

dt2
+ Y

dφ

dt
−K

dθ

dt
= 0,

C
d2ψ

dt2
+ Z

dψ

dt
− Tφ = 0

where θ, φ, χ are the angles of disturbance of the main shaft, the centrifugal arm,
and the moveable wheel respectively, A, B, C their moments of inertia, X, Y , Z
the viscosity of their connexions, K is what was formerly denoted by dA/dφ = ω,
and T and J are the powers of Thomson’s and Jenkin’s breaks respectively.
The resulting equation in n is of the form

(30)

∣

∣

∣

∣

∣

∣

An2 +Xn Kn+ T J
−K Bn+ Y 0
0 −T Cn2 + Zn

∣

∣

∣

∣

∣

∣

= 0

or

(31) n5 + n4

(

X

A
+
Y

B
+
Z

C

)

+ n3

[

XY Z

ABC

(

X

A
+
Y

B
+
Z

C

)

+
K2

AB

]

+ n2

(

XY Z +KTC +K2Z

ABC

)

+ n
KTZ

ABC
+
KTZJ

ABC
= 0.

I have not succeeded in determining completely the conditions of stability of the
motion from this equation; but I have found two necessary conditions, which are in
fact the conditions of stability of the two governors taken separately. If we write
the equation

(32) n5 + pn4 + qn3 + rn2 + sn+ t = 0,

then, in order that the possible parts of all the roots shall be negative, it is necessary
that

(33) pq > r and ps > t.

I am not able to shew that these conditions are sufficient. This compound governor
has been constructed and used.

On the Motion of a Liquid in a Tube revolving about a Vertical

Axis.

Mr C. W. Siemens’s Liquid Governor. Let ρ be the density of the fluid, k the
section of the tube at a point whose distance from the origin measured along the
tube is s, r, θ, z the co-ordinates of this point referred to axes fixed with respect to
the tube, Q the volume of liquid which passes through any section in unit of time.
Also let the following integrals, taken over the whole tube, be

(34)

∫

ρkr2ds = A,

∫

ρr2dθ = B,

∫

ρ 1
αds = C,

the lower end of the tube being in the axis of motion.
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Let φ be the angle of position of the tube about the vertical axis, then the
moment of momentum of the liquid in the tube is

(35) H = A
dφ

dt
+BQ.

The moment of momentum of the liquid thrown out of the tube in unit of time
is

(36)
dH ′

dt
= ρr2Q

dφ

dt
+ ρ

r

k
Q2 cosα,

where r is the radius at the orifice, k its section, and α the angle between the
direction of the tube there and the direction of motion.
The energy of motion of the fluid in the tube is

(37) W = 1
2
A

[

dφ

dt

]2

+BQ
dφ

dt
+ 1

2
CQ2.

The energy of the fluid which escapes in unit of time is

(38)
W ′

dt
= ρgQ(h+ z) + 1

2
ρr2Q

[

dφ

dt

]2

+ ρ
r

k
Q2 cosα

dφ

dt
+ 1

2

ρ

k2
Q3.

The work done by the prime mover in turning the shaft in unit of time is

(39) L
dφ

dt
=
dφ

dt

(

dH

dt
+
dH ′

dt

)

.

The work spent on the liquid in unit of time is

(40)
dW

dt
+
dW ′

dt
.

Equating this to the work done, we obtain the equations of motion

A
d2φ

dt2
+B

dQ

dt
+ ρr2Q

dφ

dt
+ ρ

r

k
cosαQ2 = L(41)

B
d2φ

dt2
+ C

dQ

dt
+ 1

2

ρ

k2
Q2 + ρg(h+ z)− 1

2
ρr2

[

dφ

dt

]2

= 0(42)

These equations apply to a tube of given section throughout. If the fluid is in open
channels, the values of A and C will depend on the depth to which the channels
are filled at each point, and that of k will depend on the depth at the overflow.
In the governor described by Mr C. W. Siemens in the paper already referred to,

the discharge is practically limited by the depth of the fluid at the brim of the cup.

The resultant force at the brim is f =
√

g2 + ω4r2.

If the brim is perfectly horizontal, the overflow will be proportional to x3/2

(where x is the depth at the brim), and the mean square of the velocity relative to
the brim will be proportional to x, or to Q2/3.
If the breadth of overflow at the surface is proportional to xn, where x is the

height above the lowest point of overflow, then Q will vary as xn+3/2, and the mean
square of the velocity of overflow relative to the cup as x or as 1/Qn+3/2.
If n = −1/2, then the overflow and the mean square of the velocity are both

proportional to x.
From the second equation we find for the mean square of velocity

(43)
Q2

k2
= −

2

ρ

(

B
d2φ

dt2
+ C

dQ

dt

)

+ r2
[

dφ

dt

]2

− 2g(h+ z)
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If the velocity of rotation and of overflow is constant, this becomes

(44)
Q2

k2
= r2

[

dφ

dt

]2

− 2g(h+ z)

From the first equation, supposing, as in Mr Siemens’s construction, that cosα =
0 and B = 0, we find

(45) L = ρr2
dφ

dt

In Mr Siemens’s governor there is an arrangement by which a fixed relation is
established between L and z,

(46) L = −Sz

whence

(47)
Q2

k2
= r2

[

dφ

dt

]2

− 2gh+ 2
gρ

S
r2Q

dφ

dt

If the conditions of overflow can be so arranged that the mean square of the velocity,
represented by Q2/k2, is proportional to Q, and if the strength of the spring which
determines S is also arranged so that

(48)
Q2

k2
= 2

gρ

S
r2ωQ

the equation will become, if 2gh = ω2r2,

(49) 0 = r2

(

[

dφ

dt

]2

− ω2

)

+ 2
gρ

S
r2Q

(

dφ

dt
− ω

)

,

which shews that the velocity of rotation and of overflow cannot be constant unless
the velocity of rotation is ω.
The condition about the overflow is probably difficult to obtain accurately in

practice; but very good results have been obtained within a considerable range of
driving-power by a proper adjustment of the spring. If the rim is uniform, there
will be a maximum velocity for a certain driving-power. This seems to be verified
by the results given at p. 667 of Mr Siemens’s paper.
If the flow of the fluid were limited by a hole, there would be a minimum velocity

instead of a maximum.
The differential equation which determines the nature of small disturbances is

in general of the fourth order, but may be reduced to the third by a proper choice
of the value of the mean overflow.

Theory of Differential Gearing.

In some contrivances the main shaft is connected with the governor by a wheel
or system of wheels which are capable of rotation round an axis, which is itself also
capable of rotation about the axis of the main shaft. These two axes may be at
right angles, as in the ordinary system of differential bevel wheels; or they may be
parallel, as in several contrivances adapted to clockwork.
Let ξ and η represent the angular position about each of these axes respectively, θ

that of the main shaft, and φ that of the governor; then θ and φ are linear functions
of ξ and η, and the motion of any point of the system can be expressed in terms
either of ξ and η or of θ and φ.
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Let the velocity of a particle whose mass is m resolved in the direction of x be

(50)
dx

dt
= p1

dξ

dt
+ q1

dη

dt

with similar expressions for the other co-ordinate directions, putting suffixes 2 and
3 to denote the values of p and q for these directions. Then Lagrange’s equation of
motion becomes

(51) Ξδξ +Hδη = Σm

(

d2x

dt2
δx+

d2y

dt2
δy +

d2z

dt2
δz

)

= 0

where Ξ and H are the forces tending to increase ξ and η respectively, no force
being supposed to be applied at any other point.
Now putting

(52) δx = p1dξ + q1dη

and

(53)
d2x

dt2
= p1

d2ξ

dt2
+ q1

d2η

dt2

the equation becomes

(54)

(

Ξ− Σmp2 d
2ξ

dt2
− Σmpq

d2η

dt2

)

δξ +

(

H − Σmpq
d2ξ

dt2
− Σmq2

d2η

dt2

)

δη = 0

and since δξ and δη are independent, the coefficient of each must be zero.
If we now put

(55) Σ
(

mp2
)

= L, Σ(mpq) =M, Σ
(

mqp2
)

= N

where p2 = p2
1+p

2
2+p

2
3, pq = plql+p2q2+p3q3, and q

2 = q21+q
2
2+q

2
3 , the equations

of motion will be

Ξ = L
d2ξ

dt2
+M

d2η

dt2
(56)

H =M
d2ξ

dt2
+N

d2η

dt2
(57)

If the apparatus is so arranged that M = 0, then the two motions will be indepen-
dent of each other; and the motions indicated by ξ and η will be about conjugate
axes — that is, about axes such that the rotation round one of them does not tend
to produce a force about the other.
Now let Θ be the driving-power of tile shaft on the differential system, and Φ

that of the differential system on the governor; then the equation of motion becomes

(58) Θδθ +Φδφ+

(

Ξ− L
d2ξ

dt2
+M

d2η

dt2

)

δξ +

(

H −M
d2ξ

dt2
+N

d2η

dt2

)

δη = 0

and if

(59)
δξ = Pδθ +Qδφ

δη = Rδθ + Sδφ

and if we put

(60)

L′ = LP 2 + 2MPR+NR2

M ′ = LPQ+M(PS +QR) +NRS

N ′ = LQ2 + 2MQS +NS2
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the equations of motion in θ and φ will be

(61)
Θ + PΞ +QH = L′

d2θ

dt2
+M ′

d2φ

dt2

Φ+RΞ + SH =M ′
d2θ

dt2
+N ′

d2φ

dt2

If M ′ = 0, then the motions in θ and φ will be independent of each other. If M is
also 0, then we have the relation

(62) LPQ+MRS = 0

and if this is fulfilled, the disturbances of the motion in θ will have no effect on
the motion in φ. The teeth of the differential system in gear with the main shaft
and the governor respectively will then correspond to the centres of percussion and
rotation of a simple body, and this relation will be mutual.
In such differential systems a constant force, H, sufficient to keep the governor

in a proper state of efficiency, is applied to the axis η, and the motion of this axis
is made to work a valve or a break on the main shaft of the machine. Ξ in this case
is merely the friction about the axis of ξ. If the moments of inertia of the different
parts of the system are so arranged that M ′ = 0, then the disturbance produced
by a blow or a jerk on the machine will act instantaneously on the valve, but will
not communicate any impulse to the governor.


