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A. 1-d Gaussians and normal densities

The 1-d normal density with mean µ and standard deviation σ > 0 is given
by

N(x, µ, σ) =
1√
2πσ

e−(x−µ)2/2σ2

.

Its variance can be shown to be σ2.
The cumulative function of N(x, 0, 1) cannot be computed explicitly, and is

usually denoted by Φ:

Φ(t) =

∫ t

−∞
N(x, 0, 1)dx.

In the general case, performing the change of variable x′ = (x − µ)/σ in

the integral F (t) =
∫ t

−∞ N(x, µ, σ)dx, the cumulative function of N(x, µ, σ) is
easily seen to be

F (x) = Φ((x− µ)/σ).

Notice that F is invertible, with inverse equal to

F−1(y) = σΦ−1(y) + µ,

as can be easily checked.
The Mahalanobis distance of a point x, to the Gaussian that composes the

normal density, is by definition

r =
|x− µ|

σ
;

it measures how many standard deviations is the point x far from the Gaussian.
Given R > 0, let us compute the probability that a point falls at a Ma-

halanobis distance r ≤ R from the Gaussian above. This probability is equal
to ∫ µ+σR

µ−σR

N(x, µ, σ)dx,
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and since a Gaussian is symmetric about its mean, it is equal to

2

∫ µ+σR

µ

N(x, µ, σ)dx = 2
[
F (µ+ σR)− F (µ)

]
= 2F (µ+ σR)− 1.

Conversely, if the probability p that a point falls within a certain Maha-
lanobis distance R from the Gaussian is known, one can compute R explicitly:

p = 2F (µ+ σR)− 1 =⇒ F (µ+ σR) =
p+ 1

2
=⇒ R =

[
F−1

(p+ 1

2

)
− µ

]
/σ

=⇒ R = Φ−1
(p+ 1

2

)
.

B. 2-d Gaussians and bivariate normal densities

The bivariate normal density with mean µ = (µ1, µ2) and covariance matrix
Σ is (with z = (x, y))

p(x, y) =
1

2π
√
|Σ|

exp[−1

2
(z − µ)Σ−1(z − µ)t],

where Σ is assumed to be symmetric and positive definite. It is not difficult to
show that the most general form of such two-dimensional a matrix is

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

where σ1 and σ2 are different from 0, and |ρ| < 1. Its inverse matrix Σ−1 can
be shown to be

Σ−1 =
1

1− ρ2

[
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2) 1/σ2

2

]
.

The Mahalanobis distance of a point z = (x, y), to the Gaussian that com-
poses the bivariate law above, is by definition given by r such that

r2 = (z − µ)Σ−1(z − µ)t.

Explicitly,

r2 =
1

1− ρ2

[(x− µ1

σ1

)2
− 2ρ

(x− µ1

σ1

)(y − µ2

σ2

)
+
(y − µ2

σ2

)2]
.

Since |ρ| < 1, the locus of the points for which r is constant are ellipses. It
is not difficult to see that a parametrization of such an ellipse at level r2 is

x = rσ1 cos θ + µ1,

y = rσ2(ρ cos θ +
√
1− ρ2 sin θ) + µ2.
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Interestingly, if M is the Choleski decomposition of Σ (M is an upper trian-
gular matrix such that M tM = Σ), then this parametrization can be written

(x, y) = r(cos θ, sin θ)M + (µ1, µ2);

this can be shown with ease by the explicit computation of M , namely

M =

[
σ1 ρσ2

0 σ2

√
1− ρ2

]
,

or more even simply using the fact that the parametrization above is nothing
else than the locus of the points ruM + µ, where u = (x, y) is the set of points
such that uut = 1. To see this, it suffices to put z = ruM + µ in the expression
r2 = (z − µ)Σ−1(z − µ)t. This Choleski form of the parametrization holds also
in higher dimensions, and can be obtained efficiently in computers.

Another important fact is that the directions of the two axis of the ellipse
above are given by the eigenvectors of Σ, while the extent of the great and
small radius are respectively r

√
λ1 and r

√
λ2 (λ1 and λ2 being respectively the

largest and smallest eigenvalues of Σ). In place of proving this directly, this
can be proved using the parametrization above. To this end, one can suppose
without loss of generality that (µ1, µ2) = 0. Denoting u = (cos θ, sin θ), we have
seen that the ellipse is the locus of the points z = (x, y) such that

z = ruM, with uut = 1.

The great radius of the ellipse is the segment OP , where O is the center of the
ellipse (that is, (0, 0)), and P = (x, y) is one of the two points of the ellipse that
are located at maximal distance from the center of the ellipse. Similarly, the
small radius of the ellipse is given by one of the two points of the ellipse that
are located at minimal distance from the center. In other word, we have to find
z and u such that uut = 1 and

zzt = x2 + y2 = r2uMM tut = max, and similarly zzt = r2uMM tut = min .

But this is the classic Rayleigh problem, and it is well known that in the max-
imum case, zzt/r2 = λ1 is the largest eigenvalue of MM t, and ut = ut

1 is its
corresponding normalized eigenvector. In the minimum case, zzt/r2 = λ2 is
the smallest eigenvalue of MM t and ut = ut

2 is its corresponding normalized

eigenvector. This gives the desired vectors O⃗P = r2u1,2M , and the extents
r
√
λ1 and r

√
λ2 of the great and small radii of the ellipse respectively. This

does not prove, yet, that λ1,2 are eigenvalues of Σ, since Σ = M tM ̸= MM t.

Nevertheless, the vectors O⃗P
t
= r2M tut

1,2 are in fact eigenvectors of Σ, and
λ1,2 are their corresponding eigenvalues in Σ: indeed, there holds

ΣM tut
1,2 = M tMM tut

1,2 = M t(λ1,2u
t
1,2) = λ1,2M

tut
1,2;

This shows that λ1,2 are the eigenvalues of Σ, with corresponding eigenvectors
proportional to the great and small radii of the ellipse, as was to be shown.
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Now let p(x, y) be the general bivariate normal density, with Σ as above.
We hope to compute the cumulative function of this Gaussian, as a function
of r. More precisely, our aim is to compute the probability that a point falls
inside the ellipse given by the parametrization above, for a given Mahalanobis
distance r = R.

To this end, let us first compute the Jacobian of the parametrization above.
It is equal to∣∣∣∣∣∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣∣ =
∣∣∣∣∣ σ1 cos θ −σ1r sin θ

σ2(ρ cos θ +
√
1− ρ2 sin θ) σ2r(−ρ sin θ +

√
1− ρ2 cos θ)

∣∣∣∣∣
=
√
1− ρ2σ1σ2r =

√∣∣Σ∣∣ r,
as can be easily checked.

To compute the integral of the Gaussian, we can suppose without loss of
generality that µ = 0 (since integrals are invariant under translation). The
integral to compute is

1

2π
√
|Σ|

∫ 2π

0

dθ

∫ R

0

dr
√
|Σ|re

−r2

2 .

It is equal to∫ R

0

re
−r2

2 dr =

∫ R

0

e
−r2

2 dr2/2 =

∫ R2/2

0

e−rdr

= 1− e−R2/2.

Thus, the desired cumulative function is given by

F (r) = 1− e−r2/2.

It is invertible, an its inverse can be computed explicitly; in other words, if
the probability p that a point falls at a certain Mahalanobis distance r from the
Gaussian is known, then r can be computed explicitly: Put

p = 1− e−r2/2.

Then
−r2/2 = ln(1− p),

or
r =

√
−2 ln(1− p).

Hence,

r = F−1(p) =
√
−2 ln(1− p).
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C. n-dimensional Gaussian and multivariate normal densities

Now, let us examine the n-dimensional case. The n-variate normal den-
sity with mean µ = (µ1, µ2, . . . , µn) and covariance matrix Σ is, with z =
(x1, x2, . . . , xn),

p(z) =
1

(2π)n/2
√

|Σ|
exp

[
− 1

2 (z − µ)Σ−1(z − µ)t
]
,

where Σ is assumed symmetric and positive definite. The Mahalanobis distance
of a point z = (x1, x2, . . . , xn), to the Gaussian that composes the multivariate
normal law above, is by definition given by r such that

r2 = (z − µ)Σ−1(z − µ)t.

The arguments used above in the 2-dimensional case generalize immediately
and show that:

a. The locus of the points z = (x1, x2, . . . , xn) whose Mahalanobis distance
is constant and equal to r is given by

z = ruM + µ,

where Σ = MTM is the Choleski decomposition of Σ, and u is the set of points
such that uut = 1 (that is, the unit sphere). This locus can be shown to be a
n-dimensional ellipsoid.

b. The directions of the axis of the ellipsoid above are given by the eigen-
vectors of Σ, while their respective extents are given by

r
√
λi,

λ1, λ2, . . . , λn being the eigenvalues of Σ.

It is more difficult (but not impossible) to generalize the 2-d argument above
in order find the cumulative function of the multivariate normal law. Instead, we
shall find another way. Here is a well known fact about normal laws: Let X =
(X1, X2, . . . , Xn) be a n-dimensional random normal variable, with covariance
matrix Σ. Assume furthermore that X is centered (that is, its mean is 0). Then

Σ = E(XTX).

Indeed, if we denote Z = (x1, x2, . . . , xn) and C = 1

(2π)n/2
√

|Σ|
, we have to

compute the integral

E(XTX) = C

∫ ∫
· · ·
∫

ZTZ exp(−1

2
ZΣ−1ZT )dx1dx2 · · · dxn.
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Let Σ = MTM be the Choleski decomposition of Σ. Notice that M is invertible
since

det(Σ) = det(MT ) det(M) = det(M)2,

and since Σ is positive by hypothesis (i.e. det(Σ) > 0). Furthermore, det(M) =√
det(Σ). Let us put Z = YM , or what is the same, Y = ZM−1 (with Y =

(y1, . . . , yn)). Thus,

ZΣ−1ZT = YMM−1(MT )−1MTY T = Y Y T .

The Jacobian of the transformation Z = YM is constant and equal to |M |,
hence the integral above becomes

C

∫ ∫
· · ·
∫

MTY TYM exp(−1

2
Y Y T )|M |dy1dy2 · · · dyn.

Extracting the matrices MT and M from the integral, and taking into account
that |M | =

√
Σ; the expression above becomes

MT

(
1

(2π)n/2

∫ ∫
· · ·
∫

Y TY exp(−1

2
Y Y T )dy1dy2 · · · dyn

)
M.

The expression inside the parentheses can be shown to be the identity matrix
(sketch of the proof: non-diagonal components cancel by symmetry, and diag-
onal elements can be computed using the volume of the k-dimensional sphere).
Hence the whole expression is equal to MT IM = MTM = Σ, as was claimed.

Notice that the argument above shows that if a n-dimensional centered
stochastic variable X is normally distributed, with covariance matrix Σ, and
if Σ = MTM is the Choleski decomposition of M , then Y = XM−1 is normally
distributed with covariance matrix equal to I (that is, its gaussian is the prod-
uct of n independent Gaussians with standard deviation σ = 1). By the way,
this gives a good mean to implement stochastic generators of the variable X: it
suffices to generate n samples y1, y2, . . . , yn following separately the 1-d normal
law with standard deviation σ = 1, and to multiply Y = (y1, y2, . . . , yn) by
M from the right; this gives a n-dimensional stochastic sample of the n-variate
normal law with covariance matrix Σ.

Now, our aim is to find the cumulative function of the Gaussian which com-
poses X as a function of the Mahalanobis distance r, that is, to find for each
r, the proportion of instances of X that falls statistically at a Mahalanobis
distance r′ ≤ r from the Gaussian composing X. Without loss of generality,
the variable X can be assumed to be centered. Recall that the Mahalanobis
distance of a point p = (p1, . . . , pn) to this Gaussian is given by r2 = pΣ−1pT .
Letting p be an instance of X, we can see r2 itself as as random variable, that is,
r2 = XΣ−1XT , giving rise the variable

r =
√
XΣ−1XT .
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Thus, the problem amounts to find the cumulative function of r. It can be
obtained from the cumulative function of r2: indeed, if Φr2 is the cumulative
function of r2, that is, Φr2(c) = P (r2 ≤ c), then the cumulative function Φr of
r is

Φr(c) = P (r2 ≤ c2) = Φr2(c
2).

We need a last simplification stage: As above, put X = YM , where Σ = MTM
is the Choleski decomposition of Σ. We have seen that Y is normal, with
covariance matrix equal to I. Furthermore,

r2 = XΣ−1XT = YMΣ−1MTY T = YMM−1(MT )−1MTY T = Y Y T .

Henceforth, we have only to find the cumulative function of Y Y T, or in other
words, the cumulative function of the sum of the squares of n independently
normally distributed Gaussian variables, each with mean 0 and standard devi-
ation σ = 1. Such a distribution is known in the literature as the Chi-square
distribution with n degrees of freedom, and its density has been obtained in
an analytic form: If N1, . . . , Nn are n independently distributed normal ran-
dom variables, with mean 0 and standard deviation σ = 1, then the density
distribution of N2

1 + · · ·+N2
n is

f(x) =
x(n−2)/2e−x/2

2n/2Γ(n/2)
,

where Γ is the well known Euler Gamma function.
We can now conclude: The cumulative function of the n-variate normal law is

F (r) =

∫ r2

0

x(n−2)/2e−x/2

2n/2Γ(n/2)
dx.

The change of variable x = y2, dx = 2y dy, transforms this last expression into

F (r) =

∫ r

0

yn−1e−y2/2

2(n−2)/2Γ(n/2)
dy.

If n is even, with n = 2m, then since Γ(1) = 1 and Γ(x) = (x− 1)Γ(x− 1),

F (r) =
1

2m−1(m− 1)!

∫ r

0

yn−1e−y2/2dy,

and such an integral can be computed explicitly using integration by parts. If
n is odd, with n = 2m+1, then since Γ(1/2) =

√
π and Γ(x) = (x− 1)Γ(x− 1),

F (r) =
1

2m−1(m− 1/2)(m− 3/2) · · · 3/2
√
2π

∫ r

0

yn−1e−y2/2dy.

Simplifying by the factors 2 leads to

F (r) =
1

3 · 5 · 7 · · · (n− 2)
√
2π

∫ r

0

yn−1e−y2/2dy.
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By elementary computations, this can be expressed explicitly by mean of the
one-dimensional normal cumulative function Φ(x) = 1√

2π

∫ x

−∞ e−x2/2dx.

Remark: In Matlab, the chi-square density with n-degrees of freedom is given
by the function

chi2pdf(X,n),

while its cumulative distribution function is given by

chi2cdf(s,n).

and its inverse cumulative distribution by

chi2inv(t,n).

Hence, by what has been seen, the cumulative function of any n-variate normal
centered law is

F(r) = chi2cdf(r2,n)

(r the Mahalanobis distance to the Gaussian). Conversely, the confidence level
of such a law for a given confidence c (with 0 ≤ c ≤ 1) is given by√

chi2inv(c, n).

This is the Mahalanobis distance threshold under which a proportion c of points
emitted by any n-variate normal law fall statistically below this threshold.
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